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Thy will be done



Large Language Models (LLMs)

LLMs are AI models trained on vast text datasets to understand and generate human 

language, analyze data, automate tasks, and provide personalized insights.

Significance of LLMs in AI

● Enhanced Human-Computer Interaction: LLMs enable dynamic, context-specific, and 

personalized AI, improving user experience.

● Transformative Role in AI: LLMs generate human-like text, enhancing creativity and 

personalization across industries like healthcare, content creation, and customer service

LLM Applications

● Customer Service: AI chatbots powered by LLMs provide real-time, contextual responses, 

improving customer satisfaction.

● Content Creation: LLMs automate content generation, helping businesses scale marketing 

while maintaining quality.



Catastrophic Forgetting in LLMs

Chen, L., Zaharia, M. and Zou, J., 2024. How is ChatGPT’s behavior changing over time?. Harvard Data Science Review, 6(2).

GPT-4 performance dropped from March to June 2023 across multiple categories (Math, Reasoning, 

OpinionQA, Code), while GPT-3.5 improved in several of the same tasks.

These opposing shifts show that model updates can alter capabilities unpredictably, reinforcing the 

need for more stable and continual learning approaches.

Performance drop in Prime vs. Composite 
Classification of GPT4 model



Continual Learning in LLMs

• The world changes continuously: facts, language,
code, and norms evolve.

• LLMs are trained on static data, but needs to be adapted
to the evolving world

• Retraining is slow and expensive

• Huge clusters of GPUs/TPUs over weeks or months.

• Thousands to millions of GPU hours

• Continual learning enables LLMs to update with new
information, adapt to new domains and learn behaviours
incrementally, while retaining the old knowledge.



Large Language Models in Practice

Supplier consumer Model : On the supplier side, the model is  pre-trained over a sequence 

of large-scale unlabeled datasets. After every release of the pre-trained model, the 

consumer utilizes the stronger and more up-to-date upstream model for downstream tasks. 

This cycle is repeated multiple times..



Continual Learning in LLMs

1. LLMs would require broadly 2 kinds of continual learning 

2. Horizontal continuity lies in the dynamic nature of data distribution over time.
3. Vertical continuity is characterized by a hierarchical structure, the data distribution 

of upstream tasks partially covers the downstream 

Continual Learning of Large Language Models: A Comprehensive Survey. ACM Comput. Surv. 58, 5, Article 120 (April 2026)

Vertical tasks often reuse the same input-

output mapping; less parameter interference.

Parameter-efficient methods (LoRA, adapters) let 

us isolate minute adjustments cheaply.

Horizontal Continuity the model needs to handle 

overlapping representations and update and 

addition of new data and preferences.

https://dl.acm.org/doi/10.1145/3735633


CL in LLM : Horizontal Continuity

● Horizontal continuity lies in the dynamic nature of data distribution over time.

● LLMs struggle to retain complete knowledge of past experiences when adapting to new temporal 
domains, although they do demonstrate a higher level of robustness against catastrophic forgetting

● Long Task Sequences. Horizontal continual learning ideally involves numerous incremental phases

● Abrupt Distributional Shift. In contrast to vertical continuity, here distributional shifts are abrupt and  
unpredictable



CL in LLM : Vertical Continuity

● Vertical continuity is characterized by a hierarchical structure encompassing data 

inclusiveness, and computational resource

● The data distribution of upstream tasks partially covers the downstream  : model might 

start of at a decent initialization for the subsequent stage of training

Task Heterogeneity. Stemming from the 

inherent disparity between the formulation of 

upstream tasks and downstream task

Inaccessible UPstream Data :  Data collected 

and curated under diferent protocols may not

be accessible to some downstream entities.



CL in LLMs : Stages and Types



Continual Learning  in LLMs

Pre-training places LLMs in a broad basin of 

parameter space

● Trained on huge diversity: many domains styles, 

modalities, tasks

● Leads to general reusable features

● Training diversity forces optimization into stable 

regions not task-specific minimas

● Flat minima is robust to small parameter 

perturbations; less catastrophic forgetting

● Small updates during CL stays inside the same 

basin; easier knowledge retention
Pre-training 

diversity
(Many 

domains, 
tasks)

Broad 
Basin
(Stable 

Parameter 
Space)

Robustness
(Less 

Catastrophic 
forgetting)

Easier 
Continual 
Learning

(Fine-tuning 
within stable 
Foundation)

Why LLM CL Works Better

Result: LLMs start in a robust region of parameter space, so CL mostly fine-tunes within a stable 

foundation rather than learning from scratch



Continual Pre-Training: Adapting LLMs dynamically to 

new data

What CPT Is
● Continuous pre-training on newly 

collected data (supplier side)
● Top layer of Vertical Continuity:
● Maintains alignment as real-world 

distributions evolve

Why CPT Is Needed
● Static LLMs become outdated: 

Temporal Misalignment

● Avoids costly “retrain-from-scratch”

● CPT updates timestamp-sensitive, 

domain-shifting, and multilingual 

knowledge.

The Core Challenge: Distribution Shifts
● Temporal Shift: New facts replace old ones 

(requires update + retention)

● Content Shift: New Domains (Chemistry – 

Biology – Finance)

● Language Shift: Acquiring new languages 

while preserving old ones.

Retention: Keep old 
knowledge stable 
(InvariantLAMA)

Update: Replace 
outdated knowledge 

(UpdatedLAMA)

Acquisition: Learn 
new facts (NewLAMA)



Distributional Shifts in CPT: Content Shift and Temporal Shift

Content Shift is Common and 

Beneficial but Challenging 

● Sequentially learning new fields 

(e.g., chemistry → biology → 

finance) requires domain-

specialization without 

forgetting earlier content.

● Content shifts require balancing 

rapid domain adaptation with 

minimal interference to prior 

knowledge.

Why Replay fails In CPT

● The sheer volume of pre-training 
corpora makes replay buffers 
computationally unrealistic.

● Replay-based methods struggle due to 
conflicting facts from different time 
stamps

● At LLM scale, replay becomes 
infeasible and even slows adaptation
to new domains.

Sequentially Learning new fields

Qin, Yujia, et al. "Recyclable tuning for continual pre-training." arXiv preprint arXiv:2305.08702 (2023).
Gururangan, Suchin, et al. "Demix layers: Disentangling domains for modular language modeling.“
Chen, Wuyang, et al. "Lifelong language pretraining with distribution-specialized experts." International Conference on Machine Learning. PMLR, 2023.

J. Jang, S. Ye, S. Yang, J. Shin, J. Han, G. Kim, S. J. Choi, and M. Seo. Towards continual knowledge learning of language models. In ICLR
J. Jang, S. Ye, C. Lee, S. Yang, J. Shin, J. Han, G. Kim, and M. Seo. Temporalwiki: A lifelong benchmark for training and evaluating ever-evolvinglanguage models. 2022.

Why Temporal Shift Is Uniquely 

Challenging

● Temporal shifts introduce 

conflicting facts over time.

● Unlike content or language shift, 

we don’t want to retain outdated 

facts, we need to update them.

● struggles when tasks contain 

mutually inconsistent knowledge.



Distributional Shifts in CPT: Language Shift

Forgetting Patterns Vary across 

Languages

For a LLM initially trained on 

English corpora:

A

        

Why Language Shift is Hard to Solve 

Forgetting is not trivial; Simple freezing, partial 

freezing or naïve mixing strategies are not sufficient.

Almost No Forgetting; 

Sometimes positive backward 

transfer

Mostly mild, sometimes 

positive, sometimes slight 

forgetting.

Consistent catastrophic 

forgetting of previously 

learned languages

Larger LLMs lower overall 

loss however the trend 

remains the same

[63] E. Gogoulou, T. Lesort, M. Boman, and J. Nivre. Continual learning under language shift, 2024.

[118] C.-A. Li and H.-Y. Lee. Examining forgetting in continual pre-training of aligned large language models, 2024



CPT : DEMIX Layers for Disentangling Domains for 

Modular Language Modeling
Motivation:

Monolithic LLMs Struggle with adaptation and control

Standard “dense training” updates all parameters on all data, 

leading to significant catastrophic forgetting 

Gururangan, Suchin, et al. "Demix layers: Disentangling domains for modular language modeling." Proceedings of the 2022 Conference of the North American 

Chapter of the Association for Computational Linguistics: Human Language Technologies. 2022.

The Methodology:

Replace monolithic FFNs with modular, domain-specific 

experts.

● Key Feature: This creates a modular architecture where 

domain-specific knowledge is disentangled into separated 

components, while shared parameters (like attention layers) 

are still learned across all data

DEMIX Layers : Idea

• Most domain-specific and factual knowledge in 

Transformers is stored in FFN layers, not attention layers.

• DEMix layers implement domain-conditioned FFN experts, 

trained incrementally and frozen across CPT steps, yielding 

architectural guarantees against catastrophic forgetting



CPT : DEMIX Layers for Disentangling Domains for 

Modular Language Modeling
Results: Dynamic expert mixing leads to better generalization

● Uses GPT3 model and perplexity metric

Gururangan, Suchin, et al. "Demix layers: Disentangling domains for modular language modeling." Proceedings of the 2022 Conference of the North American 

Chapter of the Association for Computational Linguistics: Human Language Technologies. 2022.

Add

Adapt to new domains without 

catastrophic forgetting by adding a new 
expert and training only it’s parameters 

and keeping the rest of the model frozen.

Remove

Control model behaviour by disabling 

domains. Simply deactivate a expert at 
inference time to simulate a model never 

trained on that data. Offering a 
lightweight mechanism to restrict access 

to unwanted data.

Novel/Unseen Domains ?



CPT : DEMIX Layers for Disentangling Domains for 

Modular Language Modeling
Results: Dynamic expert mixing leads to better generalization

● Uses GPT3 model and perplexity metric

● At inference time, we can form a parameter-free, weighted ensemble of experts to handle data from unseen or heterogeneous 

domains. This is done by estimating a posterior probability over domains for the input text.

Gururangan, Suchin, et al. "Demix layers: Disentangling domains for modular language modeling." Proceedings of the 2022 Conference of the North American 

Chapter of the Association for Computational Linguistics: Human Language Technologies. 2022.

Mix

Handle Heterogenous and unseen 

domains by dynamically combining 
experts using a Bayesian approach at 

test time

Drawbacks ?



CPT : DEMIX Layers for Disentangling Domains for 

Modular Language Modeling
Results: Dynamic expert mixing leads to better generalization

● Uses GPT3 model and perplexity metric

● At inference time, we can form a parameter-free, weighted ensemble of experts to handle data from unseen or heterogeneous 

domains. This is done by estimating a posterior probability over domains for the input text.

Gururangan, Suchin, et al. "Demix layers: Disentangling domains for modular language modeling." Proceedings of the 2022 Conference of the North American 

Chapter of the Association for Computational Linguistics: Human Language Technologies. 2022.

Mix

Handle Heterogenous and unseen 

domains by dynamically combining 
experts using a Bayesian approach at 

test time

Drawbacks

• No knowledge transfer 

across domains

• Shared components drift 

towards later domain



CPT : Lifelong Language Pretraining with Distribution-

Specialized Experts

Methodology: Addresses drawbacks of DEMIX - no explicit domain labels, regularization over shared parameters

The methodology is balanced on three pillars.

● Progressive Expert Expansion: The MoE architecture’s capacity in dynamically increased by adding new, specialized 

experts for each new data distribution. This avoids overwriting existing parameters.

● Knowledge Preservation via Freezing: Previously trained experts and their corresponding gating layers are frozen. 

This explicitly protects learned knowledge from being erased during training on new data.

● Implicit Regularization via Distillation: Shared components of the network (e.g., attention layers) are guided using 

knowledge distillation from the model’s previous state. This prevents them from drifting too far while still allowing 

adaptation to new data.
Chen, Wuyang, et al. "Lifelong language pretraining with distribution-specialized experts." International Conference on Machine Learning. PMLR, 2023.

Routing depends on hidden representation



CPT : Lifelong-MoE Results

LLM and MoE based on GLAM.  Experiments conducted on 3 different domains

Lifelong-MoE maintains performance on previously learned distributions, directly preventing the catastrophic forgetting observed in standard

sequential pretraining

Next-Token Accuracy and Perplexity on Distribution A (Each distribution is trained for 500K

Lifelong-MoE not only dramatically reduces forgetting buy also achieves competitive or state of the art performance outperforming strong 

baselines like Memory Replay and even a Dense Oracle model trained jointly on all data for specifc tasks.



Domain Adaptive Pre-Training (DAPT)

What DAP is & Why it matters

Initial LLM 
Pre-Training

(General 
Data)

DAP
(Domain-
Specific 

Unlabeled 
Data)

Downstream 
Fine-Tuning
(Task Data)

Improves performance on specialized 
(e.g., Legal, Medical Financial)

How DAP fits into Vertical Continuity

Updating with New 

Domain Knowledge

Preserving 

General-Purpose Abilities
(Reasoning, Language, 

Commonsense)

Key Observations

From the Literature

• DAP is usually a single-

stage process
Multi-stage or Continual DAP 
is rare.

• DAP is already being 

treated as CL
CL concepts are used 

without naming them: replay 

= “data mixing”, adapters = 
“domain adapters”

• Diversity of CL 

techniques used in DAP 

is limited

The Core Challenge:

Vertical Forgetting

• DAP usually damages 

performance on general 

tasks (safety, reasoning & 

Instruction-Following.

General pretraining underrepresents specialized domains. DAPT corrects 

this distributional mismatch.



Domain Adaptive Pre-Training: CL Techniques

Example Replay mechanism Mixing amount / ratio

SaulLM 
Mixes a small amount of general 

data into legal-domain DAP
2% general-domain

Me-LLaMA
Mixes general data when adapting 

to clinical/biomedical domains
~25% general-domain

HuatuoGPT-II 
Uses priority sampling to avoid 

issues from fixed-rate mixing

Priority sampling (no 

fixed %)

GeoGalactica 
Mixes geoscience (52B tokens), 

arXiv papers, and code data

8:1:1 

(Geoscience:arXiv:Code

Data)

Key Observations:

This implicitly functions as experience replay

Goal: reduce vertical forgetting of general capabilities

Replay appears Implicitly in DAP Pipelines

P. Colombo, T. P. Pires, M. Boudiaf, D. Culver, R. Melo, C. Corro, A. F. T. Martins, F. Esposito, V. L. Raposo, S. Morgado, and M. Desa. Saullm-7b: A pioneering large language model for law, 

2024.

J. Chen, X. Wang, A. Gao, F. Jiang, S. Chen, H. Zhang, D. Song, W. Xie, C. Kong, J. Li, X. Wan, H. Li, and B. Wang. Huatuogpt-ii, one-stage training for medical adaption of llms. CoRR, 

abs/2311.09774, 2023

Z. Lin, C. Deng, L. Zhou, T. Zhang, Y. Xu, Y. Xu, Z. He, Y. Shi, B. Dai, Y. Song, B. Zeng, Q. Chen, T. Shi, T. Huang, Y. Xu, S. Wang, L. Fu, W. Zhang, J. He, C. Ma, Y. Zhu, X. Wang, and C. 

Zhou. Geogalactica: A scientific large language model in geoscience, 2023

Q. Xie, Q. Chen, A. Chen, C. Peng, Y. Hu, F. Lin, X. Peng, J. Huang, J. Zhang, V. Keloth, et al. Me llama: Foundation large language models for medical applications. arXiv preprint 

arXiv:2402.12749, 2024.



Continual Domain Adaptive Pre-Training:
Adapter-Based & LoRA-Based DAP (Architecture Expansion)

• Architecture expansion adds new task capacity, preserves general-domain 

representations, and limits interference, reducing catastrophic forgetting.

• Adapter-based DAP (e.g., AF Adapter) expands attention & FFN widths,

with only adapters trained for stronger vertical forgetting resistance.

• LoRA-based DAP (e.g., Hippocrates) injects medical knowledge via LoRA, 

preserving general reasoning abilities.

• IRCoder applies LoRA on compiler IR representations, improving multilingual 

code instruction following.

• LLaMA Pro adds multiple identity copies of transformer blocks for stronger 

forgetting resistance through later tuning compared to vanilla LoRA.

Key Takeaway: 

• Replay, Adapters/LoRA, and Regularization all act as continual learning mechanisms—often unintentionally—to prevent vertical 
forgetting during DAP.

• This shows that DAP is already a CL process, requiring deliberate strategies to preserve general-purpose LLM capabilities.

Y. Yan, K. Xue, X. Shi, Q. Ye, J. Liu, and T. Ruan. Af adapter: Continual pretraining for building chinese biomedical language model. In 2023 IEEE International Conference on Bioinformatics 

and Biomedicine (BIBM), pages 953–957, Los Alamitos, CA, USA, dec 2023. IEEE Computer Society.

E. C. Acikgoz, O. B. İnce, R. Bench, A. A. Boz, İ. Kesen, A. Erdem, and E. Erdem. Hippocrates: An open-source framework for advancing large language models in healthcare. arXiv preprint 

arXiv:2404.16621, 2024.

I. Paul, J. Luo, G. Glavaš, and I. Gurevych. Ircoder: Intermediate representations make language models robust multilingual code generators, 2024. [178] A. Pentina. Theoretical foundations of 

multi-task lifelong learning. PhD thesis, 2016.



DAPT : Continual DA-pre-training of LMs with 

Soft-masking 

● LLM pre-trained on D0, we incrementally DAP-train a 
sequence of domain corpora D1,D2 .

○ overcome CF for each new domain and  general 
language knowledge in the LM.

○ encourage knowledge transfer (KT) across domains
● DAS (Continual DA-pre-training of LMs with Soft-masking).

○ novel soft-masking mechanism that computes the 
importance of units for general or domain knowledge

○ Continual learning uses soft-masking to prevent CF 
on the general and domain knowledge

○ Initialization computes the importance of units to the 
general knowledge without pre-training data (D0). 

Ke, Shao, Lin, Konishi, Kim, & Liu (ICLR 2023): “Continual Pre-training of Language Models.



DAPT : Continual DA-pre-training of LMs with 

Soft-masking 
● LLM pre-trained on D0, we incrementally DAP-train a sequence 

of domain corpora D1,D2 .
○ overcome CF for each new domain and  general 

language knowledge in the LM.

○ encourage knowledge transfer (KT) across domains

● DAS (Continual DA-pre-training of LMs with Soft-masking).
○ novel soft-masking mechanism that computes the 

importance of units for general or domain knowledge

○ Continual learning uses soft-masking to prevent CF on 

the general and domain knowledge
○ Initialization computes the importance of units to the 

general knowledge without pre-training data (D0). 

○ domain training  takes the importance scores 

accumulated so far and learn from the input data of the 
current domain 

○ importance computation computes the importance 

scores for the current domain

○ Proxy KL-divergence loss: Detect units that are 
important for LM’s robustness based on 2 input passes

○ Accumulating importance.

Ke, Shao, Lin, Konishi, Kim, & Liu (ICLR 2023): “Continual Pre-training of Language Models.



DAPT : Continual DA-pre-training of LMs with Soft-

masking 
● 6 unlabeled domain corpora for DAP-training and Roberta as LM



Continual Fine-Tuning (CFT): Bottom Layer of 

Vertical Continuity

What CFT Is

● CFT lies at the bottom layer of 

the vertical continuity hierarchy.

● The model is trained on 

successive homogeneous tasks 

drawn from an evolving (but 

relatively stable) data distribution.

Why CFT is easier than CPT/DAP

CPT/ DAP
(Global Continual 

Alignment)

Balance General 

Knowledge 
Retention vs. 

Domain Injection

CFT
(Local 

Improvement)

Focus on Direct 
Task Adaptation

• Lower Catastrophic 

forgetting due to more 

homogeneous tasks

• Simpler optimization and 

CL constraints

Continual Instruction 
Tuning (CIT)

Sequential instruction 
datasets, improving 

reasoning & a lignment

Continual Model 
Refinement (CMR)

Ongoing Improvement of 
base models with updated 

data

Continual Model Alignment 
(CMA)

RLHF/DPO style updates 
done sequentially for safety 

and trustworthiness.

Key Sub Areas of CFT

• CL techniques in LLM are most actively explored in CFT.

• CL techniques such as Regularization, parameter Isolation and replay style sampling are widely used and effective.



CFT : LR ADJUST 

● Approaches leverage the inherent anti-forgetting nature of LLMs while avoiding the adoption of overly complex 

CL techniques

● LR ADJUST [255] proposes dynamically adjusting the learning rate to mitigate the overwriting of knowledge 

from new languages onto old ones.

● Lower base LR for later tasks, Task-dependent LR scaling, Layer-wise LR decay, where Lower (foundational) 

layers receive smaller updates and Higher (task-specific) layers adapt more aggressively

● Limitations : Cannot fully prevent forgetting under strong domain/task shifts, Sensitive to LR scheduling choices

Winata, G. I., Xie, L., Radhakrishnan, K., Wu, S., Jin, X., Cheng, P., Kulkarni, M., & 

Preotiuc-Pietro, D. (2023). Overcoming catastrophic forgetting in massively multilingual 

continual learning. Findings of the Association for Computational Linguistics: ACL 2023 ,

multilingual natural language 

understanding data set, MASSIVE 

(FitzGerald et al., 2022)



CFT :  SEQ/SEQ*

Some works[1,2] introduce strategies for fine-tuning LLMs on a sequence of downstream classification 

tasks, such as freezing the LLM and old classifier’s parameters after warm-up (LLM and classifier are 

trained jointly on the first task for a short period), and allocating new classifier head for future tasks. 

J. Zheng, S. Qiu, and Q. Ma. Learn or recall? revisiting incremental learning with pre-trained language models, 2023.

Zhang et. Al. Pythia: A suite for analyzing large language models across training and scaling, ICML 2023



CFT: Compositional Adapters

A method for adaptively adding compositional modules 
(adapters) during continual sequence generation tasks. 
Before training on new domains, a decision stage determines 
which trained module can be reused.

Hidden state mixing: For each transformer layer, the model 
evaluates all existing modules (from previous tasks) and a 
newly added module.
• Combines output of each module using a weighted 

average of their outputs
• Model learns weight coefficients and newly added module
• The module with the highest learned weight is considered 

the most useful and is selected for reuse.

Y.Zhang,X.Wang,andD.Yang. Continual sequence generation with adaptive compositional modules. In S. Muresan, P. Nakov, and A. Villavicencio,, ACL 2022

GPT-2 model on data sets WikiSQL (SQL query generation), CNN/DailyMail
(news article summarization ) MultiWOZ (semantic state sequence generation



CFT : Gated Integration of Low-Rank Adaptation for Continual 

Learning(GainLoRA)

Liang, Yan-Shuo, and Wu-Jun Li. Gated Integration of Low-Rank Adaptation for Continual Learning of Language Models (GainLoRA) NeurIPS 2025

● In several practical situations, actual task ID is not known.  
● Existing solutions simply add all the separate LoRA branches together to form the final output (Model Merging), causing 

uncontrollable inference. 
● GainLoRA - introduces gating modules to integrate the new and old LoRA branches.

Core Innovation: Task-wise Gating Introduces independent gating modules for each task. Each gate outputs a learned 
integration coefficient  that determines the influence of the i-th LoRA branch

Performance evaluation of SuperNI benchmark - dialogue generation, 

information extraction, question answering, summarization, sentiment analysis



Continual Instruction Tuning (CIT): Learning from Evolving 

Instruction Streams

What is CIT?

When Instruction datasets arrive as a stream. 

Requires learning new instructions without 

forgetting the previous ones.

Instruction Stream LLM 

Model

Why CIT is Unique?
● Instruction data is sequential and 

heterogeneous. (new tasks, formats, and 

reasoning patterns.)

● Forgetting manifests as reduced 

instruction-following ability ("half-listening" 

effect).

● rich natural language instructions enable 

knowledge transfer and reduce forgetting,

Key Techniques Used in CIT

Replay Based Methods

• KPIG Replay: Uses Key 
Part Information Gain for 

dynamic replay selection, 

reducing “half listening”.

• SSR: Uses LLM to 
generate synthetic replay 

data, lowering compute 

cost while preserving 
skills.

PEFT-Based Approaches

• O-LoRA Learns new 

instructions in 

orthogonal subspace, 

preserving older LoRA 

weights; minimizes 

interference.

• SAPT: Shared attentive 

learning + selection 

module to manage 

knowledge transfer and 

forgetting jointly.Each instance dτ in the task τ forms  a triple(i,c,y)



Y. He, X. Huang, M. Tang, L. Meng, X. Li, W. Lin, W. Zhang, and Y. Gao. Don’t half-listen: Capturing key-part information in continual instruction tuning, ACL 2024.

● Replay also introduces semantic interference, and the model begins 

to shortcut to the lowest-effort interpretation , following only primary 

verb and ignoring modifiers.

● Half-Listening Problem — where the model partially follows instructions 

because prior replay or fine-tuning emphasized only fragments of 

meaning. 

● Key parts are consecutive spans in the instruction which provide 

task-aware guidance on the content, length, and format to generate 

desired responses..

● Improve replay efficiency by computing Key-Part Information Gain 

(KPIG) on masked parts to dynamically select replay data, 

addressing the “half-listening” issue in instruction following. 

CIT  : Key-Part Information Gain (KPIG)



Y. He, X. Huang, M. Tang, L. Meng, X. Li, W. Lin, W. Zhang, and Y. Gao. Don’t half-listen: Capturing key-part information in continual instruction tuning, 

ACL 2024.

● KPIG (Key-Part Information Gain)This is used to rank training or replay 

examples based on how much critical semantic information they carry

● Masking important phrase spans in the instruction (e.g., goals, 

constraints, modifiers).Measuring how much the model’s confidence 

drops when these masked parts are removed.

● Select M seen tasks with the lowest mean IG as replay tasks and choose MN 

samples for reply : Low information gain indicates that the model is not effectively 

capturing the task-specific constraints in the instruction.

CIT  : Key-Part Information Gain (KPIG)

Llama-2-7B 128 tasks in 40 categories from SupNatInst



CIT : Self-Synthesized Rehearsal
● Conventional rehearsal-based methods rely on previous training data to retain the model’s ability, 

which may not be feasible in real-world applications, for instance CL on publicly released LLM 
checkpoint

● Self-Synthesized Rehearsal (SSR) that uses the LLM to generate synthetic instances for rehearsal.
○ the base LLM to generate synthetic instances, conducting in-context learning (ICL) with few-

shot demonstrations (The ICL ability of LLMs tends to exhibit a significant degradation after 
supervised fine-tuning (SFT) on specific tasks)

○ latest LLM is used to refine the outputs of synthetic instances (synthetic instance retains the 
knowledge acquired by the latest LLM.)

○ select diverse high-quality synthetic instances for rehearsal (through clustering)
○ Llama-2-7b  and SuperNI dataset (Wang et al., 2022)

J.Huang,L.Cui,A.Wang,C.Yang,X.Liao,L.Song,J.Yao,andJ.Su. Mitigatingcatastrophicforgettinginlargelanguagemodelswithself-synthesized rehearsal, 

ACL 2024.



CFT :  Orthogonal LORA

● Introduce O-LoRA, a simple and efficient approach for continual learning in language models, incrementally learning 

new tasks in orthogonal subspaces

● Orthogonal Gradient Descent (OGD) needs to store gradients of all previous data - intractable for large-scale 

language models, used PEFT based on LORA

● Hypothesis : LoRA parameters encapsulate crucial model update directions. Therefore, the gradient subspaces of 

previous tasks are succinctly represented by the LoRA parameters.

● Llama &B trained on – Alpaca data set - open-source multitask instruction tuning dataset introduced by Taori et al.  

(2023) Tasks from various domains, such as STEM, humanities, social sciences, and general knowledge.

● Tested on MMLU data set - Massive Multitask Language Understanding designed to evaluate the general knowledge 

and problem-solving



Continual Model Refinement (CMR): Post Deployment 

Improvement of LLMS

What Is CMR

CMR is the recurring and incremental 

process of improving or correcting a 

deployed LLM.

• Deployed language models decay over time 

due to shifting inputs, changing user needs, 

or emergent world-knowledge gaps. When 

such problems are identified, we want to 

make targeted edits while avoid modifying  

behaviors of pre-trained models. 

• CMR allows safe, targeted, and continual 

improvement of a deployed LLM.

Modern methods use model editing, retrieval-

triggered updates and parameter isolation 

(e.g., LoRA experts) to avoid broad 

interference and maintain alignment.



CMR : Lifelong Model Editing with Discrete Key-Value 

Adaptors

This method treats hidden representations of the language model as a 

similarity key to decide when to use the updated parameters for a new task.

GRACE enables targeted, non-destructive model edits by adding a 

lightweight key–value memory at selected layers, rather than modifying the 

model’s original weights.

How it works

● Each edit stores: (hl−1,v)

• a key (representing a latent activation pattern hl−1)

• a value (the corrected or updated behavior v, learnt by fine 

tuning)

• an influence radius (ε) controlling when the edit applies

Deferral decision at inference

• At each GRACE-enabled layer, the model:

• Treats the current hidden activation as a query

• Searches for the closest stored key

• If the query is similar enough (distance < ε): GRACE uses the value

• Else falls back to the original pretrained computation

T. Hartvigsen, S. Sankaranarayanan, H. Palangi, Y. Kim, and M. Ghassemi. Aging with grace: 

Lifelong model editing with discrete key-value adaptors. In Advances in Neural Information Processing Systems, 2023.



CMR : Lifelong Model Editing with Discrete Key-

Value Adaptors

This method treats hidden representations of the language model as a 

similarity key to decide when to use the updated parameters for a new 

task.

GRACE enables targeted, non-destructive model edits by adding a 

lightweight key–value memory at selected layers, rather than modifying 

the model’s original weights.

● Experiments to correct hallucination: GPT-3 to generate 238 

wikipedia-style biographies using subjects from WikiBio. Edits for all 

238 biographies, creating 1392 sequential edits and 592 already-

accurate outputs.

● Test RetentionRate (TRR): Edited model retains its performance on 

original testing data

● Edit Retention Rate (ERR): We check how well an edited model 

retains previous edits

● Metric used is perplexity - lower the better

T. Hartvigsen, S. Sankaranarayanan, H. Palangi, Y. Kim, and M. Ghassemi. Aging with grace: 

Lifelong model editing with discrete key-value adaptors. In Advances in Neural Information Processing Systems, 2023.



CMR : A Dual-Memory Architecture for Lifelong Editing (WISE)

Existing methods for Continual refinement for LLMs fail to achieve reliability, Generalization and Locality. WISE resolves this by 

introducing a dual-memory system that isolates edits from the original model’s knowledge.

Triangle in Lifelong Editing

Methods that edit model parameters (long-

term memory e.g., ROME) suffer from poor 
locality, while retrieval based methods 

(working memory, e.g., GRACE) fail to 
generalize. This creates a fundamental 

trade-off.

• Reliability: Remembering all past edits 

across a long sequence.
• Generalization: Applying edits to 

paraphrased or semantically similar 

queries.
• Locality: Ensuring edits do not affect 

unrelated knowledge in the model.

The WISE Solution: Dual Memory, Routing, and Sharding

1. Side Memory Creation: A copy of a specific FFN layer’s value matrix (w_v) is 

created to serve as a dedicated editable ‘side memory’ (W_v’)

2. Activation-Based Routing: A router determines if an input x is related to an edit by 
calculating the activation of the side memory’s corresponding FFN layer)

3. Knowledge Sharding: Incoming edits are distributed across distinct subspaces of 
the side memory defined by random masks. This prevents catastrophic forgetting.

4. Conflict-Free Merging: Periodically, the edited subspaces are merged into a single 

side memory using Ties-merge.

Wang, Peng, et al. "Wise: Rethinking the knowledge memory for lifelong model editing of large language models." Advances in N eural Information Processing 

Systems 37 (2024): 53764-53797.



CMR : WISE Results

Across diverse tasks and thousands of sequential edits, WISE consistently outperforms state-of-the-art model editors by successfully 

balancing the three key metrics of Reliability, Generalization and Locality.

WISE Overcomes the Impossible Triangle

(ZsRE QA Task, LLaMA-2-7B)

Key Takeaways

• Breaks the Trade-Off: WISE is the only method to maintain high performance across all three metric.
• Outperforms SOTA by a Wide Margin: The average score of 0.83 on the QA Task represents a significant jump over the next best method.

In contrast GRACE’s generalization score collapses to 0.08

• Robust & Scalable: This strong performance holds across models (LLaMA, Mistral, GPT-J), tasks (Question Answering, Hallucination 
Correction), and scales gracefully to 3,000+ edits, demonstrating true lifelong learning capability.



Continual Model Alignment (CMA)

Why CMA is Needed

● A single alignment stage 

(e.g., RLHF, DPO) can 

restrict the model’s behavior 

to a narrower distribution.

● Alignment updates often 

overwrite previously learned 

preferences; This 

phenomenon is called the 

“Alignment Tax”

● As factual knowledge, 

societal norms, and safety 

standards evolve, CMA 

ensures ongoing alignment 

with contemporary 

expectations.

Different CMA Approaches

RL Based CMA

• Standard RLHF/DPO/STeER modifies 

many parameters at once, causing 
large behavioral shifts.

• Adaptive Model Averaging (AMA): 

An alignment-aware continual 

adaptation mechanism that averages 
multiple model layers using adaptive 

weights to minimize alignment tax.

• Continual Proximal Policy 

Optimization (CPPO): Learns 
example-level weighting to decide 

when to strengthen policy alignment 
vs. retain earlier behaviors.

SL-Based CMA

• Frequent preference shifts require 

continual correction of supervised 

alignment datasets.

• Continual Optimal Policy Fitting 

(COPF): An adaptation of DPO that 

mitigates sub-optimal policy fitting 

and prevents over-optimization 

under continual updates.



CMA : Mitigating the Alignment Tax of RLHF

The Alignment-Forgetting Trade-off

Reinforcement Learning from Human Feedback (RLHF) aligns 

LLMs with human preferences, but degrades performance on the 

pre-trained abilities of a model (general language modelling –

reasoning , coding, instruction following , generalization), known as 

the ‘alignment tax’

The Surprising Power of Model Averaging (MA)

A simple interpolation between the pre-RLHF and post-RLHF 

models (Model Averaging) achieved the strongest alignment-

forgetting among all competing methods.

Key Insight: Layer-Specific Effects

The trade-off is not uniform across the model. 

Critically, averaging lower-level layers (e.g., layers 1 – 8) produces 

a ‘magical’ improvement in both alignment reward and NLP task.

Tasks could share similar lower-level features, e.g., better word 

representation on low-level layers benefits both NLP and alignment 

tasks.

Lin, Yong, et al. "Mitigating the alignment tax of rlhf." Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. 2024.

HMA adaptively interpolates between the pre and post RLHF 

models by assigning a unique averaging ration to each of the K 

transformer blocks.

Optimization Goal

For a given level of ‘forgetting’ (proxied by the mean of the ratios,  

), HMA finds the optimal combination of layer wise ratios                       

That maximizes the alignment reward. 



CMA : Mitigating the Alignment Tax of RLHF: Results
● HMA consistently outperformed vanilla MA strategies and it’s performance was consistent across different model 

sizes and RLHF algorithms such as RSF,PPO and DPO.

● Alignment is evaluated using the "helpfulness and harmlessness dataset" (Bai et al., 2022) and  average reward 

score across all prompts is reported as the HH RLHF.

● Alignment tax is evaluated  on Commonsense QA, Reading comprehension, and Translation

Generalization to state of the art models on Alpaca benchmark

Conclusion: By leveraging the insight of layer-specific features sharing, HMA provides a more effective, principled, and broadly 

applicable method for mitigating the alignment tax in LLMs.



CMA : A Sample-wise Weighting Strategy for Continual 

Alignment (CPPO)

The Core Idea

● The Insight: Categorize Samples by Reward & Probability

The foundation of CPPO is to classify each generated sample (x) into one of five 

types based on it’s reward score R(x) and the policy’s generation probability P(x). 

This enables a targeted, rather than uniform, approach to policy updates.

● The Mechanism: Adaptive Sample-wise Weighting

The paper introduces two weights to modulate the PPO objective for each 

sample:

○ Policy Learning Weight: Controls the intensity of learning from a 

given sample

○ Knowledge Retention Weight: Controls the penalty for deviating 

from the old policy for that sample.

● Weighting Strategy:

○ High-performance (             ):Consolidate knowledge for this sample.

○ High variance/ overfitting sample (             ): Learn new knowledge from 

this sample and force new sample to be different.

○ Noisy (             ): Decrease it’s impact on learning.

○ Normal sample: Make no change to the PPO Objective.

The Final Objective Function:
This adaptive weighting strategy is integrated directly 

into a modified PPO loss function, creating a more 

stable and intelligent learning objective.

Zhang, Han, et al. "Cppo: Continual learning for reinforcement learning with human feedback." The Twelfth International Conference on Learning 

Representations. 2024.



CMA : CPPO Results…

● Evaluate method using the Reddit (Völske et al., 2017) 

dataset for summarization. Used the human preference 

data provided by CarperAI5. 1.3B gpt2-xl  as RM and PM

● Outperforms Baselines in Final Alignment

After learning multiple tasks, CPPO achieves the highest 

reference Preference Model Score (rPMS), indicating superior 

alignment with human preferences.

● Prevents Forgetting and Enables Backward Transfer

While all baselines exhibit catastrophic forgetting, CPPO is the 

only method to achieve a negative SFR. This indicates backward 

transfer.



CMA : Continual Optimal Policy Fitting
A Non-RL Method for Evolving LLM Alignment

DPO’s Limitations

● Static by Design: DPO is great for one-shot alignment, but it is not designed for adapting to human evolving human preferences 

over sequential tasks.

● Risk of Over-optimization: DPO aggressively widens the gap between preferred and rejected samples

Zhang, Han, et al. "Copf: Continual learning human preference through optimal policy fitting.“ ACL 2025

The COPF Process

COPF introduces two continual learning specific approaches to cater to the task of continual alignment:

● Replay Memory: Maintaining a buffer of historical task data to merge with new task data.

● Function Regularization: When learning a new task, COPF employs a regularization loss to ensure the new policy does 

not differ significantly from optimal policies of the previous tasks.

DPO suffers from instability during the initial training stage, to prevent this COPF decouples the reward estimation from the

estimation from the immediate policy state by explicitly determining rewards before fitting.



CMA : COPF Results

Task Incremental Learning for Human Feedback (TIL-HF) benchmark.

COPF achieves the highest overall accuracy while better mitigating catastrophic 

forgetting compared to strong baselines, including a continual version of DPO.



Benchmarks Datasets : TRACE :  A Comprehensive Benchmark for 

Continual Learning in Large Language Models

● Existing continual learning benchmarks are typically too simple for 
modern aligned LLMs and do not measure general abilities, 
instruction-following quality, or safety behavior after incremental 
updates.

● TRACE defines a rigorous, standardized continual learning 
benchmark

● TRACE consists of eight sequential tasks spanning multiple 
domains and difficulty types. The tasks are chosen to challenge 
models across reasoning, domain knowledge, multilingual skills, 
code generation, and math reasoning.



Benchmarks Datasets : TemporalWiki-Benchmark for CPT

● TemporalWiki is a lifelong benchmark built from monthly Wikipedia/Wikidata snapshots to train and evaluate 

“ever-evolving” language models.

● It targets temporal misalignment (models trained on older data producing outdated facts).

● TWiki-Diffsets: training data created by taking the diff between consecutive monthly Wikipedia snapshots (new 

articles + changed/new sentences).

● Probes are labeled UNCHANGED vs CHANGED to evaluate stability (retain) and plasticity (update).

● Diff-based updating is reported as ~12× less compute than retraining on full snapshots (in their setup).

Jang et al. (EMNLP 2022): “TemporalWiki: A Lifelong Benchmark



Benchmarks Datasets : SUPER-NATURAL INSTRUCTIONS (Super-NI)

● Dataset Size: Contains 1,616 NLP tasks across 76 task types, 

spanning 55 languages and 33 domains.

● Task Types: Includes a wide range of NLP tasks such as 

classification, text generation, question answering, coreference 

resolution, paraphrasing, and more.

● Task Instructions: Each task is paired with detailed instructions, 

including a task definition, positive examples, and negative 

examples.

● Languages & Domains: Covers tasks in English and non-English 

languages (576 non-English tasks) across diverse domains like 

medicine, business, sports, law, technology, and more.

● Evaluation Metrics: Uses ROUGE-L for evaluation, which is a string 

overlap metric that works for text generation tasks.



Benchmarks Datasets  : CoIN (Continual 

Instruction Tuning for MLLMs)

• Goal: Benchmark continual instruction tuning and measure forgetting vs. 

retained ability

• Coverage: 10 datasets spanning 8 multimodal task categories

• Training setup: Sequential instruction tuning using LoRA (Low-Rank 

Adaptation)

• Evaluation (two views):

Instruction-Follow Accuracy: Standard task score (e.g., accuracy / exact 

match)

Reasoning / Knowledge Retention: LLM-graded score (focuses on reasoning 

quality)



Continual Multimodal LLMs 

Why Forgetting Happens in MLLMs

● Catastrophic forgetting in multimodal models often stems 
from imbalanced or misaligned embedding 
representations, not just sequential training.

● Multimodal LLMs combine representations  from 
fundamentally different spaces: Text embeddings, Vision 
embeddings. These are heterogeneous and were not jointly 
pre-trained to lie on the same manifold.

● Each multimodal task requires different alignments between 
image/text tasks

● MLLMs depend heavily on modality bridges (adapters, 
projection layers). These bridges are: Not stable across 
tasks, gets updated aggressively,  sensitive to downstream 
distribution shifts

● Different modalities are emerging throughout the 
incremental learning 

Core Design Principles for Better CMLLMs

• Fixing or regularizing the structure of the embedding 

space/

• Allocate task-aligned embedding directions more 

evenly across the vector space.

• Use representation regularization to prevent 

dominant-dimension collapse.

• Encourage modality separation or orthogonality to 

reduce interference.



Retrieval augmented generation (RAG) and CL

● RAG augments an LLM with an external, updatable memory (documents, passages, 

databases) retrieved at inference time

● RAG can be seen as an  external-memory-based alternative to continual learning : it updates 

external knowledge, not parameters, while CL updates model parameters 

○ Avoids Catastrophic Forgetting Entirely : No parameter overwriting, New knowledge 

added by indexing new documents, Zero Replay Cost - No need to store old training 

data, Handles Temporal & Factual Drift

● Parameter-based continual learning performs updates via gradient descent, whereas 

retrieval-augmented generation updates knowledge by modifying the underlying corpus

● RAG often outperforms CPT for factual freshness

● RAG does NOT solve:

○ Continual instruction tuning, Skill acquisition (reasoning, coding), Behavioral 

alignment, Multimodal grounding

Lewis et al., 2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, NeurIPS 2020



CL in LLMs : Future Directions

● Continual learning community tends to prioritize empirical research over theoretical 
exploration.

○ Learning Dynamics in Continual Pre-Training for Large Language Models [1]
○ Unified Domain Incremental Learning (UDIL) in [2] proposes upper bounds for intra-

domain and cross-domain distillation losses. 
○ Applying these existing theories directly to continual LLMs can be imprudent, given 

their pre-trained, large-scale nature and loss functions. 
● More sophisticated and accurate data mixing strategies and efficient replay sample selection 

mechanisms are needed
● The long-term memory inherent in the whole set of parameters of LLMs often lacks 

interpretability and explicit manipulability
● The existing works on mostly focused on domain incremental and task incremental learning 

settings, needs  exploration in class incremental learning for LLMs. 

[1]Wang, X., Tissue, H., Wang, L., Li, L., & Zeng, D. D. (2025). Learning dynamics in continual pre-training for large language 

models. arXiv preprint arXiv:2505.07796.[

[2] Shi, H., & Wang, H. (2023). A unified approach to domain incremental learning with memory: Theory and algorithm. In H. 

Larochelle et al. (Eds.), Advances in Neural Information Processing Systems, 36. NeurIPS.



Key Python Libraries for Continual Learning

• Avalanche (PyTorch): End-to-end continual learning library with benchmarks, many implemented baselines/SOTA 
algorithms, experiment utilities, and reproducible pipelines. Great starting point for deep-learning CL research.

• Continuum: Dataset and scenario utilities for setting up class-incremental and task-incremental experiments easily 
(good for data handling & scenario generation).

• PyCIL (Python CIL): Focused toolbox for class-incremental learning: implements classical CIL methods (iCaRL, 
LwF, EWC variants) and evaluation pipelines.

• Renate: Production-oriented library for automating continual retraining and model maintenance (built on PyTorch & 
PyTorch Lightning) — useful for applied systems and MLOps workflows.

• SequeL: Research-friendly framework (PyTorch + JAX support) designed for extensibility across regularization, 
replay, and architectural CL methods.

• River (stream learning): Lightweight streaming/online learning library focused on concept drift and incremental 
models (ideal for non-deep or resource-constrained streaming setups).

• ContinualLM: Github repository of an extensive Continual Learning framework for LLMs focused on continual DAPT
containing pytorch implementation of multiple SOTA methods.

https://avalanche.continualai.org/
https://avalanche.continualai.org/
https://github.com/Continvvm/continuum
https://github.com/Continvvm/continuum
https://github.com/LAMDA-CL/PyCIL
https://github.com/LAMDA-CL/PyCIL
https://github.com/awslabs/Renate
https://github.com/awslabs/Renate
https://github.com/nik-dim/sequel
https://github.com/nik-dim/sequel
https://riverml.xyz/0.9.0/
https://riverml.xyz/0.9.0/
https://github.com/UIC-Liu-Lab/ContinualLM
https://github.com/UIC-Liu-Lab/ContinualLM
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