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DU Large Language Models (LLMs) BrAL

LLMs are Al models trained on vast text datasets to understand and generate human

language, analyze data, automate tasks, and provide personalized insights. BENEFITS OF LLMS
Significance of LLMs in AI —
e ™~ -
®  Enhanced Human-Computer Interaction: LLMs enable dynamic, context-specific, and DATA SENTIMENT QUESTION exr
. . . . EXTRACTION ANALYSIS ANSWERING CLASSIFICATION
personalized Al, improving user experience. L L
®  Transformative Role in AI: LLMs generate human-like text, enhancing creativity and — — p——
personalization across industries like healthcare, content creation, and customer service NATURAL CHATBOTS LANGUAGE [ TEXT
LANGUAGE TUTORING SUMMARIZATION|
3 3 UNDERSTANDING/ \ Y,
LLM Applications s s —
®  Customer Service: Al chatbots powered by LLMs provide real-time, contextual responses,
. . . . CONTENT TRANSLATION CODE RECOMMENDATIONS
improving customer satisfaction. CREATION J L GENERAT"’N/

®  Content Creation: LLMs automate content generation, helping businesses scale marketing
while maintaining quality.

GEN ETICS

AI PDWERED
MEDICAL
INSIGHTS
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GPT-4 GPT-3.5 | GPT-4 I

—March
OpinionQA _Juanr: 2320§3 OpinionQA
SensitiveQA Math II SensitiveQA Math II
LangChain LangChain \
HotpotQA ‘100'315"1 ! HotpotQA 1ooht>4>'.,a ol 0
March 2023 June 2023
Visual USMLE Visual USMLE
RANSONNG. a6 Ganaration | icn Dam RESSONND. ke Ceneritin. | SRl XBM Performance drop in Prime vs. Composite
and Formatting and Formatting Classification of GPT4 model
(a) Performance drift

GPT-4 performance dropped from March to June 2023 across multiple categories (Math, Reasoning,
OpinionQA, Code), while GPT-3.5 improved in several of the same tasks.

These opposing shifts show that model updates can alter capabilities unpredictably, reinforcing the
need for more stable and continual learning approaches.

Chen, L., Zaharia, M. and Zou, J., 2024. How is ChatGPT’s behavior changing over time?. Harvard Data Science Review, 6(2).
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« The world changes continuously: facts, language, e
code, and norms evolve. ontinua

Input Stream

* LLMs are trained on static data, but needs to be adapted
to the evolving world

* News Articles
* Social Media Feeds

* Retraining is slow and expensive S g
« Conversational Data
* Huge clusters of GPUs/TPUs over weeks or months. + Updated Databases

e Thousands to millions of GPU hours

* Continual learning enables LLMs to update with new
information, adapt to new domains and learn behaviours
incrementally, while retaining the old knowledge.

Ada talt-ilzrr’l| Engine Hp toDate
P 8 LLM
Incremeinal Learning Modules
O Retraining Loop « Accurate Answers
+ Current Events Knowledge
Fact Extraction & Validation * Evolving Language Use
D e Udfes * Reduced Factual Errors
« Contextual Relevance
Norm Adjustment (e.¢.),
language style, bias
reduction

Knowledge Graph Refierment

L

Real-time Knowledge
Deployment

—_—
Jan 2023 July 2023 Jan 2024

Constantly evolving knowledge cuttfof
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Supplier consumer Model : On the supplier side, the model is pre-trained over a sequence
of large-scale unlabeled datasets. After every release of the pre-trained model, the
consumer utilizes the stronger and more up-to-date upstream model for downstream tasks.
This cycle is repeated multiple times..

Continual Pre-Training

= B8 B8 B

Unlabeled Unlabeled Unlabeled Unlabeled
Data Data Data Data
SUPPLIER | - . =
- [B]—(8
LLM LLM LLM
CONSUMER
@ —»— =3
Task Task Task

.
>

Continual Fine-Tuning
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1. LLMs would require broadly 2 kinds of continual learning

2. Horizontal continuity lies in the dynamic nature of data distribution over time.

3. Vertical continuity is characterized by a hierarchical structure, the data distribution
of upstream tasks partially covers the downstream

Gradual Shift Abrupt Shift

Aaplive Prass.
fa/,
DAP) ip,
JAF) o

Fine-Tuning

(a) Vertical Continual Learning of LLMs

L 4

[} Horizoettal Continual Leaming of LUMs

Vertical tasks often reuse the same input-
output mapping; less parameter interference.
Parameter-efficient methods (LoRA, adapters) let
us isolate minute adjustments cheaply.

Horizontal Continuity the model needs to handle
overlapping representations and update and
addition of new data and preferences.

Continual Learning of Large L anguage Models: A Comprehensive Survey, ACM Comput. Surv, 58, 5, Article 120 (April 2026)
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e Horizontal continuity lies in the dynamic nature of data distribution over time.

e LLMs struggle to retain complete knowledge of past experiences when adapting to new temporal
domains, although they do demonstrate a higher level of robustness against catastrophic forgetting

e Long Task Sequences. Horizontal continual learning ideally involves numerous incremental phases

e Abrupt Distributional Shift. In contrast to vertical continuity, here distributional shifts are abrupt and
unpredictable

Gradual Shift Abrupt Shift

- N P

Domain A Domain B Domain/C

(b) Horizontal Continual Learning of LLMs
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e Vertical continuity is characterized by a hierarchical structure encompassing data
inclusiveness, and computational resource

e The data distribution of upstream tasks partially covers the downstream : model might
start of at a decent initialization for the subsequent stage of training

- Task Heterogeneity. Stemming from the
presirdining inherent disparity between the formulation of
1) upstream tasks and downstream task
Ar Adaptive Prg,fr:_”n/ _ -

o Inaccessible UPstream Data : Data collected
fine-Tuning and curated under diferent protocols may not

b be accessible to some downstream entities.

(a) Vertical Continual Learning of LLMs
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M,

» Horizontal Continuity

Continual Pre-Training (CPT)

Temporal Shift ] [ Content Shift ] [ Language Shift

l

Continual Domain-Adaptive Pre-Training (CDAP)

l

Continual Fine-Tuning (CFT)

Vertical Continuity

Continual Continual Continual
Instruction Tuning Model Refinement Model Alignment
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Pre-training places LLMs in a broad basin of
parameter space
e Trained on huge diversity: many domains styles,
modalities, tasks

Flat vs. Sharp Minima Layer Abstractions

7| Task-specific et DO
/ (Tendencies) -mw:n % V>

Abstract
) (Concepts)
e Leads to general reusable features \ " 4 = Dw
Training diversity forces optimization into stable o -
. . o Flat Minima Sharp Minima Gonerdl
regions not task-specific minimas il Bt g (Universal Patterns)
e Flat minima is robust to small parameter
perturbations; less catastrophic forgetting Why LLM CL Works Better
e Small updates during CL stays inside the same s
Aefl asier
basin; easier knowledge retention At B Robustness Continual

Learning

(Many (Stable (L=

Catastrophic
forgetting)

(Fine-tuning
within stable
Foundation)

domains, Parameter
tasks) Space)

Result: LLMs start in a robust region of parameter space, so CL mostly fine-tunes within a stable
foundation rather than learning from scratch



].'.| Continual Pre-Training: Adapting LLMs dynamically to  #2ALy
====  new data

What CPT Is Retention: Keep old
e  Continuous pre-training on newly knowledge stable
collected data (supplier side) (InvariantLAMA) e e .
o  Top layer of Vertical Continuity: The Core Challenge: Distribution Shifts
e  Maintains alignment as real-world e Temporal Shift: New facts replace old ones
distributions evolve (requires update + retention)

e Content Shift: New Domains (Chemistry —
Biology — Finance)

e Language Shift: Acquiring new languages
while preserving old ones.

Why CPT Is Needed

° Static LLMs become outdated:
Temporal Misalignment Update: Replace
Avoids costly “retrain-from-scratch” [z e o (N RN ou(ﬂggﬁ ekgf,xv,\heAdfe
CPT updates timestamp-sensitive,
domain-shifting, and multilingual
knowledge.

Acquisition: Learn
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Content Shiftis Common and  wWhy Temporal Shift Is Uniquely Why Replay fails In CPT
Beneficial but Challenging Challenging

e

e  Temporal shifts introduce

conflicting facts over time.

Memory Buffer

(e.g., 10% data)
Sequentially Leaming new fields : ;
Pre-trained Knowledge
Time T1 (Trillions of Tokens)
(Past)
° Sequentially learning new fields Messi Plays
. . for Barcelona |
(e.g., chemistry — biology — | CONFLICT | e  The sheer volume of pre-training
finance) requires domain- corpora makes replay buffers
speCIaI_lzatlon .W'thOUt e Unlike content or language shift, computationally unrealistic.
forgetting earlier content. we don’t want to retain outdated Replay-based methods struggle due to
e  Content shifts require balancing w inou conflicting facts from different time
rapid domain adaptation with facts, we need to update them. stamps
minimal interference to prior e struggles when tasks contain ° At LLM scale, replay becomes .
knowledge. mutually inconsistent knowledge. infeasible and even slows adaptation

to new domains.

Qin, Yuijia, et al. "Recyclable tuning for continual pre-training." arXiv preprint arXiv:2305.08702 (2023).

Gururangan, Suchin, et al. "Demix layers: Disentangling domains for modular language modeling.*

Chen, Wuyang, et al. "Lifelong language pretraining with distribution-specialized experts." International Conference on Machine Learning. PMLR, 2023.

J. Jang, S. Ye, S. Yang, J. Shin, J. Han, G. Kim, S. J. Choi, and M. Seo. Towards continual knowledge learning of language models. In ICLR

J. Jang, S. Ye, C. Lee, S. Yang, J. Shin, J. Han, G. Kim, and M. Seo. Temporalwiki: A lifelong benchmark for training and evaluating ever-evolvinglanguage models. 2022.
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Languages

For a LLM initially trained on
English corpora:

- B Almost No Forgetting;
BB sometimes positive backward

Danish transfer

] [ Mostly mild, sometimes
BIB positive, sometimes slight

Norwegian forgetting.

& O Consistent catastrophic
I forgetting of previously
Icelandic !earned languages

Language Shift

Larger LLMs lower overall
loss however the trend
remains the same

Why Language Shift is Hard to Solve

Forgetting is not trivial; Simple freezing, partial
freezing or naive mixing strategies are not sufficient.

[63] E. Gogoulou, T. Lesort, M. Boman, and J. Nivre. Continual learning under language shift, 2024.
[118] C.-A. Liand H.-Y. Lee. Examining forgetting in continual pre-training of aligned large language models, 2024
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Motivation:
Monolithic LLMs Struggle with adaptation and control

Standard “dense training” updates all parameters on all data,
leading to significant catastrophic forgetting

DEMIX Layers : Idea

* Most domain-specific and factual knowledge in
Transformers is stored in FFN layers, not attention layers.

* DEMix layers implement domain-conditioned FFN experts,
trained incrementally and frozen across CPT steps, yielding
architectural guarantees against catastrophic forgetting

K
FFNpemix(h) = Y _ gi(d) - FEN®)(R)

where:

¢ [k indexes domains (news, biomedical, code, etc)
e FFN® is the FFN expert for domain k

* gi(d) is a domain-conditioned gate

Gururangan, Suchin, et al.

Modular Language Modeling

The Methodology:
Replace monolithic FFNs with modular, domain-specific
experts.

p(xe | z<r, Dy = j)

T Medical US. Court
Papers Opinions
DEMIX R
LAVER JrINFERENCE &3
&w gaﬁg
T } coviD-1 Github
w (1 1] ‘-.._ Popers = =, Code

® Key Feature: This creates a modular architecture where
domain-specific knowledge is disentangled into separated
components, while shared parameters (like attention layers)
are still learned across all data

"Demix layers: Disentangling domains for modular language modeling." Proceedings of the 2022 Conference of the North American

Chabnter of the Association for Computational L inauistics: Human | anauaae Technoloaies 2022
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=== Modular Language Modeling

Results: Dynamic expert mixing leads to better generalization

o U GPT3 ’ i 1.3B parameters per GPU
ses model and perplexity metric Domsin Daver DEMD DEMIX
(naive)  (cached prior; §5.4)
Domain Corpus 1B 11.8 11.5 11.3
CS 13.5 12.2 12.1

1B 30M NewsWire sentences (Chelba et al., 2014) LEGAL 6.8 6.7 6.7
CS 1.89M full-text CS papers from S20RC (Lo et al., 2020) M;ED 9'5 9',, 9'1

$ LEGAL 2.22M U.S. court opinions, 1658 to 2018 (Caselaw Access Project, 2018) ; . e .

z 5 . : ‘ > WEBTEXT 13.8 14.6 14.3

Z MED 3.2M full-text medical papers from S20RC (Lo et al., 2020) REALNEWS 12.5 133 131

- s vl - R o D T T ~ o) * - - .

: WEBTEXT t 8M Wct? doc}u‘mcms ((J()k:lhhl.n af\d (()ﬁcn. 2019) REDDIT 284 30.6 28.1

=~ REALNEWS 35M articles from REALNEWS (Zellers et al., 2019) REVIEWS 14.0 12.6 12.5
REDDIT Reddit comments from pushshift.io (Baumgartner et al., 2020) _
REVIEWS' 30M Amazon product reviews (Ni et al., 2019) Average 13.8 13.8 134

Remove — 1 Novel/Unseen Domains ?

Control model behaviour by disabling

Adapt to new domains without domains. Simply deactivate a expert at
catastrophic forgetting by adding a new inference time to simulate a model never
expert and training only it's parameters trained on that data. Offering a

and keeping the rest of the model frozen. lightweight mechanism to restrict access

to unwanted data.

Gururangan, Suchin, et al. "Demix layers: Disentangling domains for modular language modeling." Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies. 2022.
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A

=== Modular Language Modeling

Results: Dynamic expert mixing leads to better generalization

® Uses GPT3 model and perplexity metric

® Atinference time, we can form a parameter-free, weighted ensemble of experts to handle data from unseen or heterogeneous
domains. This is done by estimating a posterior probability over domains for the input tex*

xl

. T Dy=3j Dy =3 Parameters per GPU ‘
p(D: = | @) B tp(mi)t m2=D (s s\ 350M JeoM 138 ) O =

pl@e: | Di = §) - p(D: = j) DENSE 259 214 184 1738 & ¥

= =5 — . 0 DENSE (balanced) 25.3 19.6 18.3 17.1
Yjap@< [De=0)-pDe=J) \povav.Tokex 248 204 184 180 D, //\\

DEMIX (naive) 288 238 218 211

DEMIX (average) 27.2 22.4 21.5 20.1 7 NEWS
DEMIX (uniform) 245 205 196 187 O w == |=u
DEMIX (updating) 219 187 176  17.1
DEMIX (cached) 214 18.3 17.4 17.0
@ Mix &f\\/
- Drawbacks ? “ The COVID-19 pandemic is
Handle Heterogenous and unseen q D Cfeusssfofg;esngzgﬁée
domains by dynamically combining 7 coronavirus-2 (SARS-CoV-2) =
experts using a Bayesian approach at and has spread worldwide...
test time

Gururangan, Suchin, et al. "Demix layers: Disentangling domains for modular language modeling." Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies. 2022.
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=== Modular Language Modeling

Results: Dynamic expert mixing leads to better generalization

® Uses GPT3 model and perplexity metric

® Atinference time, we can form a parameter-free, weighted ensemble of experts to handle data from unseen or heterogeneous
domains. This is done by estimating a posterior probability over domains for the input tex*

xl

. T Dy=j)-p(Dy =3 Parameters per GPU [
pDc = ] we= I tp(mi)t)p( =D s s\ ASOM JeoM 138 ) O

p@—i | Dy = §) - p(Ds = j) DENSE 259 214 184 178 & ®

= < ST 0 DENSE (balanced) 25.3 19.6 18.3 17.1
Yjap@< [De=0)-pDe=J) \povav.Tokex 248 204 184 180 Dy //\\

DEMIX (naive) 288 238 218 211

DEMIX (average) 27.2 22.4 21.5 20.1 W‘TA NEWS
DEMIX (uniform) 245 205 196 187 | o w == |=h
DEMIX (updating) 219 187 176 17.1 :
DEMIX (cached) 21.4 18.3 17.4 17.0
@ Mix &’\\/‘
- Drawbacks “ The COVID-19 pandemic is
Handle Heterogenous and unseen * No knowledge transfer q D Cfeusssfo?gr?egjnrggﬁ;e
. . . . <t
domains by dynamically combining across domains coronavirus-2 (SARS-CoV-2)
experts using a Bayesian approach at « Shared components drift and has spread worldwide...

test time towards later domain

Gururangan, Suchin, et al. "Demix layers: Disentangling domains for modular language modeling." Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies. 2022.
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==== Specialized Experts

Methodology: Addresses drawbacks of DEMIX - no explicit domain labels, regularization over shared parameters

The methodology is balanced on three pillars.
® Progressive Expert Expansion: The MoE architecture’s capacity in dynamically increased by adding new, specialized
experts for each new data distribution. This avoids overwritina existina narameters.

K MoE Outputs Lifelong Pretraining
FFNMOE(h) — Z gk(h) FFN(k)(h) PP pD ® P
- _*  Output Regulariza ﬁ__w\
where: e I"'j - __
o FFN®): expert k Expert, v Brperten [ N N
* gi(h): learned gating function L PLA, N '___,/ 0: |
oo . Expert/Gating Freeze - ¢ x \ / Expert/Gating Expansion
* Routing is token-level, not domain-level T \
Top2—Gating gre-u op2—Gating
Routing depends on hidden representation B e
(t—2) (t—1) () (t+1)
g(h) = Softmax(Wyh) X x X x
Inputs Stream of Corpus Distribution

® Knowledge Preservation via Freezing: Previously trained experts and their corresponding gating layers are frozen.
This explicitly protects learned knowledge from being erased during training on new data.

® Implicit Regularization via Distillation: Shared components of the network (e.g., attention layers) are guided using
knowledge distillation from the model’s previous state. This prevents them from drifting too far while still allowing

adaptation to new data.
Chen, Wuyang, et al. "Lifelong language pretraining with distribution-specialized experts." International Conference on Machine Learning. PMLR, 2023.
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LLM and MoE based on GLAM. Experiments conducted on 3 different domains Distribution Corpus Tokens (B)
A _ Wikipedia (19%) 3
Filtered Webpages (81%) 143
B i18n 366
C Conversations 174

Lifelong-MoE maintains performance on previously learned distributions, directly preventing the catastrophic forgetting observed in standard
sequential pretraining

Next-Token Accuracy and Perplexity on Distribution A (Each distribution is trained for 500K

S
3]
(=]

40

. = gurs == baseline
= ours == baseline

=]
iy
[54]

35

30

Next Token Acc. (Dist. A)
5
Perplexity (Dist. A)

0 500 1000 1500 ) 500 1000 1500
Step (K) Step (K)

Lifelong-MoE not only dramatically reduces forgetting buy also achieves competitive or state of the art performance outperforming strong
baselines like Memory Replay and even a Dense Oracle model trained jointly on all data forspecifc tasks.



DAP
(Domain-
Specific
Unlabeled
Data) ﬁ

%/——J
Improves performance on specialized
(e.g., Legal, Medical Financial)
How DAP fits into Vertical Continuity

General pretraining underrepresents specialized domains. DAPT corrects

this distributional mismatch.

6 Fine-Tuning A A

Initial LLM
Pre-Training

Specialized Vertical
Performance Forgetting Risk

KRG Y

Loss of general
capabilities

Downstream

Fine-Tuning
(Task Data)

(General
Data)

»

S ! Updating with New

2 (Task-Specific Layers) .

g Domain Knowledge

T @ =\

g DAP LI

1% (Adaptive Layers) il i ;

o[ L y Preserving -

2| r N General-Purpose Abilities

e General Pre-Training i

E (Foundation Layers) v v (Reasoning, Language,
8 J Commonsense)

The Core Challenge:
Vertical Forgetting

Large DAP Datasets
& Many Updates

LLM
General
Knowledge
& Abilities

&
4
General @ S
Knowledge Model
Overwritten Behavior
Shifted Too
Aggressively

DAP usually damages
performance on general
tasks (safety, reasoning &
Instruction-Following.

B @4

Key Observations
From the Literature

DAP is usually a single-
stage process
Multi-stage or Continual DAP
is rare.

DAP is already being
treated as CL

CL concepts are used
without naming them: replay
= “data mixing”, adapters =
“‘domain adapters”
Diversity of CL
techniques used in DAP

is limited
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Replay appears Implicitly in DAP Pipelines

Key Observations:
This implicitly functions as experience replay
Goal: reduce vertical forgetting of general capabilities

Mixing amount / ratio ——

Mixes a small amount of general

o i .
SaulLM ot i eyl it DAR 2% general-domain
Me-LLaMA M1x§s 'gener.al data-l s adjaptmg ~25% general-domain —
to clinical/biomedical domains —
Uses priority sampling to avoid Priority sampling (no
HuatuoGPT-II issues from fixed-rate mixing fixed %) General-Domain Domain-Specific Data
811 Data (e.g., Lega], Clinical,
Mixes geoscience (52B tokens), o Geoscience)

GeoGalactica (Geoscience:arXiv:Code

arXiv papers, and code data Data)

P. Colombo, T. P. Pires, M. Boudiaf, D. Culver, R. Melo, C. Corro, A. F. T. Martins, F. Esposito, V. L. Raposo, S. Morgado, and M. Desa. Saullm-7b: A pioneering large language model for law,
2024.

J. Chen, X. Wang, A. Gao, F. Jiang, S. Chen, H. Zhang, D. Song, W. Xie, C. Kong, J. Li, X. Wan, H. Li, and B. Wang. Huatuogpt-ii, one-stage training for medical adaption of llms. CoRR,
abs/2311.09774, 2023

Z.Lin, C. Deng, L. Zhou, T. Zhang, Y. Xu, Y. Xu, Z. He, Y. Shi, B. Dai, Y. Song, B. Zeng, Q. Chen, T. Shi, T. Huang, Y. Xu, S. Wang, L. Fu, W. Zhang, J. He, C. Ma, Y. Zhu, X. Wang, and C.
Zhou. Geogalactica: A scientific large language model in geoscience, 2023

Q. Xie, Q. Chen, A. Chen, C. Peng, Y. Hu, F. Lin, X. Peng, J. Huang, J. Zhang, V. Keloth, et al. Me llama: Foundation large language models for medical applications. arXiv preprint
arXiv:2402.12749, 2024.
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Low-Rank Adaptation(LoRA)

Embedding h

* Architecture expansion adds new task capacity, preserves general-domain
representations, and limits interference, reducing catastrophic forgetting.

+ Adapter-based DAP (e.g., AF Adapter) expands attention & FFN widths,
with only adapters trained for stronger vertical forgetting resistance.

* LoRA-based DAP (e.g., Hippocrates) injects medical knowledge via LoRA, N
preserving general reasoning abilities.

+ IRCoder applies LoRA on compiler IR representations, improving multilingual il
code instruction following. weights

+ LLaMA Pro adds multiple identity copies of transformer blocks for stronger W

forgetting resistance through later tuning compared to vanilla LoRA.

Inputs h

Key Takeaway:

* Replay, Adapters/LoRA, and Regularization all act as continual learning mechanisms—often unintentionally—to prevent vertical
forgetting during DAP.

» This shows that DAP is already a CL process, requiring deliberate strategies to preserve general-purpose LLM capabilities.

Y. Yan, K. Xue, X. Shi, Q. Ye, J. Liu, and T. Ruan. Afadapter: Continual pretraining for building chinese biomedical language model. In 2023 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pages 953-957, Los Alamitos, CA, USA, dec 2023. IEEE Computer Society.

E. C. Acikgoz, O. B. Ince, R. Bench, A. A. Boz, 1. Kesen, A. Erdem, and E. Erdem. Hippocrates: An open-source framework for advancing large language models in healthcare. arXiv preprint
arXiv:2404.16621, 2024.

I. Paul, J. Luo, G. Glavas, and I. Gurevych. Ircoder: Intermediate representations make language models robust multilingual code generators, 2024. [178] A. Pentina. Theoretical foundations of
multi-task lifelong learning. PhD thesis, 2016.
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- Soft-masking

® LLM pre-trained on DO, we incrementally DAP-train a
sequence of domain corpora D1,D2 .
O  overcome CF for each new domain and general
language knowledge in the LM.
O  encourage knowledge transfer (KT) across domains
® DAS (Continual DA-pre-training of LMs with Soft-masking).
O  novel soft-masking mechanism that computes the
importance of units for general or domain knowledge
O  Continual learning uses soft-masking to prevent CF
on the general and domain knowledge
O Initialization computes the importance of units to the
general knowledge without pre-training data (DO).

i
1
1
1 ~

1 0 i pmmmmmmm——n Ao $-r-mmm, aemmmmmmmesgazemeeeoee- i
: : g9 I ; i I’ : P;'ev 3 g ! \1
[ i : i 1
L R R R TN i o |
[ 1 | i !
T i
o !
i
1
i

Initialization Continual Learning
. () e o (8) © )
“' General Knowledge Importance K Domain Training Current Domain Importance

Computation

C tati ’
ompu ton : I‘ LMLM . LC[mlTast
Lil.‘rlpt | d Trey Lyim
: i
,,,,,,,,,,,,,,, SNSRI ofull ofel

Transformer . : Transformer <e-1) | Transformer
Layer | Pl Layer [ L P Layer! |
"""" Forward T forward 7 Forward !
Voo VY S
F“f“" R v "'p -
7, P oo, P
Lo D) H . o
RS SRR U =1 o N P
Transformer [ i ! i Transformer : ;

[ P Transformer | Layer | :

S Layer [ ’ :

Backward . : _Ba_cﬂwa;& ___________ Backward

Ke, Shao, Lin, Konishi, Kim, & Liu (ICLR 2023): “Continual Pre-training of Language Models.
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® || M pre-trained on DO, we incrementally DAP-train a sequence

DAPT : Continual DA-pre-training of LMs with

Soft-masking

of domain corpora D1,D2 .

©)

O

overcome CF for each new domain and general
language knowledge in the LM.
encourage knowledge transfer (KT) across domains

® DAS (Continual DA-pre-training of LMs with Soft-masking).

©)

©)

©)

novel soft-masking mechanism that computes the
importance of units for general or domain knowledge
Continual learning uses soft-masking to prevent CF on
the general and domain knowledge

Initialization computes the importance of units to the
general knowledge without pre-training data (DO).
domain training takes the importance scores
accumulated so far and learn from the input data of the
current domain

importance computation computes the importance
scores for the current domain

Proxy KL-divergence loss: Detect units that are
important for LM’s robustness based on 2 input passes
Accumulating importance.

." General Knowledge Importance |

Initialization Continual Learning
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Ke, Shao, Lin, Konishi, Kim, & Liu (ICLR 2023): “Continual Pre-training of Language Models.



|ii| DAPT : Continual DA-pre-training of LMs with Soft- #/L
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® 6 unlabeled domain corpora for DAP-training and Roberta as LM

Unlabelde Domain Datasets End-Task Classification Datasets
Source Dataset Size Dataset Task #Training #Testing #Classes
Yelp Restaurant  758MB | Restaurant  Aspect Sentiment Classification (ASC) 3,452 1,120 3
Reviews Amazon Phone  724MB Phone Aspect Sentiment Classification (ASC) 239 553 2
Amazon Camera 319MB Camera Aspect Sentiment Classification (ASC) 230 626 2
ACL Papers 867MB ACL Citation Intent Classification 1,520 421 6
Academic Papers Al Papers 507MB Al Relation Classification 2,260 2,388 7
PubMed Papers  989MB PubMed Chemical-protein Interaction Prediction 2,667 7,398 13
Category Domain Restaurant ACL Al Phone PubMed Camera Average
Model MF1 Acc MFI1 Acc MF1 Acc MF1 Acc MFI1 MF1 Acc MF1 Acc
Pool 8096 87.80 69.69 7411 6855 7597 8496 86.95 73.34 86.03 90.83 77.25 81.50

RoBERTa 7981 87.00 66.11 7126 6098 T71.85 8375 86.08 72.38 78.82 87.03 73.64 79.27

Non-CLL.  DAP-RoBERTa | 80.84 87.68 68.75 7344 6897 7595 8259 8550 72.84 8439 8990 76.40 80.89
DAP-Adapter 80.19 87.14 68.87 7292 6055 7138 8271 8535 71.68 83.62 89.23 74.60 79.62
DAP-Prompt 79.00 8645 6666 7135 6147 7236 84.17 86.53 73.09 85.52 9038 7498 80.03

NCL 79.52  86.54 6839 7287 06794 7571 84.10 86.33 72.49 8571 90.70 76.36 80.77

NCL-Adapter | 80.13 87.05 6739 7230 5771 6987 8332 8586 72.07 83.70 89.71 7405 79.48

DEMIX 7999 8§7.12 6846 7273 06335 7286 78.07 8242 71.73 86.59 91.12 7470  79.66

BCL 78.97 86,52 7071 7458 6626 7455 81.70 84.63 71.99 85.06 9051 75.78 80.46

CLASSIC 7989 87.05 6730 7211 5984 7108 84.02 86.22 69.83 86.93 91.25 74.63 79.59

CL KD 78.05 8559 69.17 7373 06749 7509 8212 84.99 72.28 81.91 88.69 75.17 80.06
DAP-train EWC 80.98 8764 06594 7117 06504 7358 8232 85.13 71.43 8335 89.14 7484 79.68
DER++ 79.00 8646 6720 7216 6396 7354 8322 85.61 72.58 87.10 9147 7551 80.30

HAT 76.42  85.16  60.70 68.79 4737 65.69 7233 79.13 69.97 74.04 85.14 66.80 75.65

HAT-All 7494 8393 52.08 6394 3416 5607 6471 7443 68.14 65.54 81.44 5993 71.33

HAT-Adapter | 79.29 86.70 6825 7287 6484 73.67 8144 8456 71.61 82.37 89.27 7463 79.78
DAS 80.34 87.16 69.36 7401 7093 7746 8599 8§7.70 7. 88.16 9230 7793 8191




]...| Continual Fine-Tuning (CFT): Bottom Layer of ’5@
==== Vertical Continuity

What CFT Is Why CFT is easier than CPT/DAP Key Sub Areas of CFT
) CPT/ DAP CFT
° CFT lies at the bottom layer of (Global Continual (Local Continual Instruction Continual Model
. A . i | t Tuning (CIT) Refinement (CMR)
the vertical continuity hierarchy. Alignment) o omt mprovement) o :
Sequential instruction Ongoing Improvement of
P The model is trained on Balance General @ datasets, improving base models with updated
. Knowledge reasoning & alignment data
successive homogeneous tasks Retention vs. Focus on Direct
drawn from an evolvmg (but Domain Injection Task Adaptation Continual Modl Alignment

(CMA)

relatively stable) data distribution.
. RLHF/DPO style updates
 Lower Catastrophlc done sequentially for safety

forgetting due to more and HuStworhiness.
homogeneous tasks

* Simpler optimization and
CL constraints

*  CL techniques in LLM are most actively explored in CFT.
«  CL techniques such as Regularization, parameter Isolation and replay style sampling are widely used and effective.
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e Approaches leverage the inherent anti-forgetting nature of LLMs while avoiding the adoption of overly complex
CL techniques

e LR ADJUST [255] proposes dynamically adjusting the learning rate to mitigate the overwriting of knowledge
from new languages onto old ones.

e Lowerbase LR for later tasks, Task-dependent LR scaling, Layer-wise LR decay, where Lower (foundational)
layers receive smaller updates and Higher (task-specific) layers adapt more aggressively

e Limitations : Cannot fully prevent forgetting under strong domain/task shifts, Sensitive to LR scheduling choices

1: Randomly initialize the classifier on ¢ o
2: forall D; € Ddo k,,m. PRI

3: Adjust learning rate to Iry 85 1 /\A\M
lr; = max (JTmin: Iry 1 - '}’) multilingual natural language & o0
. : understanding data set, MASSIVE ] ,
4 Compute Vo Lp, (fg) using D; (FitzGerald et al., 2022) v

5: 9t+1 <_ gt o Ert vgﬁDt (fﬂ) =4 VANILLA REPLAY + LR ADJUST
6: end for e S [ e
70 1 — moNO EWC
Winata, G. |, Xie, L., Radhakrishnan, K., Wu, S., Jin, X., Cheng, P., Kulkami, M., & : "E"W : : 'EWC *f“DlUST |
Preotiuc-Pietro, D. (2023). Overcoming catastrophic forgetting in massively multilingual 0 5 10 15 20 25 30 35 40

continual learning. Findings of the Association for Computational Linguistics: ACL 2023, task
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Some works|[1,2] introduce strategies for fine-tuning LLMs on a sequence of downstream classification
tasks, such as freezing the LLM and old classifier's parameters after warm-up (LLM and classifier are
trained jointly on the first task for a short period), and allocating new classifier head for future tasks.

classid | class | class id freeze old classifiers Only train new classifier
- : ) ; for task 1,2,3 or task 4 - SEQ*(Ours) B L2KD
D&Cls : i U&CI ~ — Topicidntanats §- Lol s J PCLL
' - f \ -~ i -®- LAMOL t -@- LFPTS
/W‘\ : FM\ —> [enM s([[I4 o Y
- [ A _ - Ak 3
discriminant ’ generative discriminant & gcr.wrafivc ‘{_‘5"‘ ‘:x‘ P /| \ N
1) warm up for 2) freeze PLM and 4;“'*§-'“’PLM"\ ) 3
4 1-3 epochs train the classifier » \
Y
Task 1 Task 4
(a) S1: warm-up and freeze PLM (b) S2: freeze old classifiers
Granularity Task Dataset #t Classes  # Tasks
Text Classification TopiciDatasets 25 5
Classifit] CLINCI50 150 15
Sentence Level Intent Classification Banking77 17 7
FewRel L0 8
Relation Extraction TACRED 40 g
Few-NERD Bt 11
Word Level  Named Entity Recognition ~ Ontonotes3 18 f =
1282 16 5 Banking77

J. Zheng, S. Qiu, and Q. Ma. Learn or recall? revisiting incremental learning with pre-trained language models, 2023.
Zhang et. Al. Pythia: A suite for analyzing large language models across training and scaling, ICML 2023
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A method for adaptively adding compositional modules

(adapters) during continual sequence generation tasks. [ T T— ] '
Before training on new domains, a decision stage determines { J
. . —( Add & Norm ]
which trained module can be reused. S !
. o N
Hidden state mixing: For each transformer layer, the model =Task 23 | ESHNW:
I : i
evaluates all existing modules (from previous tasks) and a [ T ]
newly added module. |
» Combines output of each module using a weighted ok 1
average of their outputs @ Adapter
* Model learns weight coefficients and newly added module Task 3
° The mOdule W|th the highest Iearned weight IS COhSldered Method Comparison on Dissimilar Tasks
the most useful and is selected for reuse. o
SRS B SR "
I [ I i i i i iil E w0
o —— —_ s
! : g (-’ g
S Sjm——
! i i i | | 5
i i | : H H : ! i 2 101
1 H ! ] ! i : : : z
0- T T T
Task Task Task Task Task Task  Task Task Task @ C S o & » o
1 2 3 12 3 1 2 3 « A
a b c W & vbav‘z
Added for Added for Added for GPT-2 model on data sets WikiSQL (SQL query generation), CNN/DailyMail
Task 1 Task 2 Task 3 (news article summarization ) MultiwOZ (semantic state sequence generation

Y.Zhang,X.Wang,andD.Yang. Continual sequence generation with adaptive compositional modules. In S. Muresan, P. Nakov, and A. Villavicencio,, ACL 2022
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|Il| CFT : Gated Integration of Low-Rank Adaptation for Continual bF\P‘,I/\f
===z | earning(GainLoRA)

e |n several practical situations, actual task ID is not known.

e Existing solutions simply add all the separate LoRA branches together to form the final output (Model Merging), causing
uncontrollable inference.

e GainLoRA - introduces gating modules to integrate the new and old LoRA branches.

Core Innovation: Task-wise Gating Introduces independent gating modules for each task. Each gate outputs a learned
integration coefficient that determines the influence of the i-th LoRA branch

t a.?', E [0, 1]
W, =W,_1+a,AB = Zfl-sAe'B-s, a;~0;i€e[0,t—1] a; = @G; (JE)
=
‘ a;~1;1=T Performance evaluation of SuperNI benchmark - dialogue generation,
information extraction, question answering, summarization, sentiment analy:
Answer- @: Addition @ : Multiplication : Frozen E \
4 7\ i Initialization Updating : Imposing Ordel‘ 1
i e — : ., : constraints constraints ':: RS Models MethOdS APT FTi’
- Vu\dli‘:,:"hgran::wh:: N il J
. - O-LoRA [61] 3937 15.84
= | - =] 5
1 Endne Llama-2-7B GainLoRA (O-LoRA) | 51.10 4.96
H & . & E & new LoRA branch [ =0 J [ —0 ] [ 20 IntLORA [32] 42.93 11-23
w [ w V| o : ? GainLoRA (InfLoRA) | 51.27 2.84
o o mleam O-LoRA [61] 4392 14.15
iy iomeonewhoha&avervh::ﬂlg;gml;gm GainLORA (O-LORA) 52‘47 478
* E%:%E?::?EEIEEEE%EE‘?’SM “\ Old Branches New Branch ) ;ﬁ:uﬁ::%ﬂ:?[[:@;;ﬂ:::zs . L]ama_z_] 3B Inﬂ‘JORA [32] 43’64 ]4'85
(Clreputable (D)ae (Ejuficient U J GainLoRA (InfLoRA) | 53.64 2.87
(a) Expandable LoRA Architecture in GainLoRA (b) Gating Modules in GainLoRA

Liang, Yan-Shuo, and Wu-Jun Li. Gated Integration of Low-Rank Adaptation for Continual Learning of Language Models (GainLoRA) NeurlPS 2025



[I' Continual Instruction Tuning (CIT): Learning from Evolving BROLA

Instruction Streams

What is CIT?

ll-@n»l»e)-»Q

Instruction Stream

. . M d

When Instruction datasets arrive as a Slream.
Requires leaming new instructions without
forgetting the previous ones.

Why CIT is Unique?

° Instruction data is sequential and
heterogeneous. (new tasks, formats, and
reasoning patterns.)

° Forgetting manifests as reduced
instruction-following ability ("half-listening"
effect).

° rich natural language instructions enable
knowledge transfer and reduce forgetting,

Each instance d1 in the task T forms a triple(i,c,y)

Key Techniques Used in CIT

GE

Replay Based Methods

KPIG Replay: Uses Key
Part Information Gain for
dynamic replay selection,
reducing “half listening”.

SSR: Uses LLM to
generate synthetic replay
data, lowering compute
cost while preserving
skills.

L

PEFT-Based Approaches

O-LoRA Learns new
instructions in
orthogonal subspace,
preserving older LoRA
weights; minimizes
interference.

SAPT: Shared attentive
learning + selection
module to manage
knowledge transfer and
forgetting jointly.
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Continual Instruction Tuning

e Replay also introduces semantic interference, and the model begins ;%----T?-S-"-?-‘-’ZT----H ----- Taskatt ___ }—-

Story Generation Merchant Classification

to shortcut to the lowest-effort interpretation , following only primary “a ~a
verb and ignoring modifiers. E---—-E-‘f‘f"-?_ffﬂ_----} }----—-E-‘ia-"-"’fﬁf ----- J
Item Classification
e Half-Listening Problem — where the model partially follows instructions {Predicive Resuls of ) Cla-1c2(on Taskat 1) | Predotve Resulsof 271 i 1calon Taskat
. . . :Out of and Merchant Categories : : Out of fegori
because prior replay or fine-tuning emphasized only fragments of 6.9% i i

meaning.

i Merchant Classification Instruction
MPleace tdae merchant cateaory ]

e Key parts are consecutive spans in the instruction which provide i
. 1 | Please judge merchant category | ;
task-aware guidance on the content, length, and format to generate } Lbased on the merchantname. _ |} 0 Please judge xxx category
N i The merchant categories include: ! “H-_H_ﬁl_alf-hsten based on the xxx.
desired responses.. : ‘ ; 3

isichuan cuisine} ‘western’... ____1 _____:> % Do the merchant

Think classification task?

e Improve replay efficiency by computing Key-Part Information Gain i e ,é?m R
(KPIG) on masked parts to dynamically select replay data, ' e s e
addressing the “half-listening” issue in instruction following.

)
: Eval att( Task)

Y. He, X. Huang, M. Tang, L. Meng, X. Li, W. Lin, W. Zhang, and Y. Gao. Don’t half-listen: Capturing key-part information in continual instruction tuning, ACL 2024.
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e KPIG (Key-Part Information Gain)This is used to rank training or replay
examples based on how much critical semantic information they carry

e Masking important phrase spans in the instruction (e.g., goals,
constraints, modifiers).Measuring how much the model’s confidence
drops when these masked parts are removed.

Llama-2-7B 128 tasks in 40 categories from SupNatlnst
G(d,d;") = Info(y|x) — Info(y|mask(z))

Sup-NatInst-ST

e Select M seen tasks with the lowest mean IG as replay tasks and choose MN Seen Tasks  Held-out Tasks
samples for reply : Low information gain indicates that the model is not effectively Model P-score V-score P-score V-score P-
capturing the task-specific constraints in the instruction. SFT 51 120 250 241

Stage 2: Information Gain Fine-tuning 1 :°le"dLL'-L":ﬂ"‘:’t" H LoRA 33.7 124 267 230
ained LLM 2 L2 347 123 265 232
F T 245 Ennd Etrartion. [ volgken ‘ Previous Tasks 16 1 EWC 302 135 251 246
Task at t-1: Smcalflow Classifica | Agent : 0.4 H: S%n Story Generation 0.7 o Task a1 G Smcaifiow Classiication
Instruction with key-part mask. —H User i 0.1 ik T i vith kev-i ask: t-1 A DARE _ _ _ _
et o s |02l rrodiamsin 08 |3 | e ey | AR : IMCockwil -
IMASKL. (I | other ! g1 I (> smeatfiow Classitication 0.2 Take note that the ) ocktal
fns{rucuon part me Retrieving tokens in ground o- E?‘® | Conversely, the [MASK]. [MASK]. l J5D
For ihis task. you - “g‘;n‘iﬂ;g m[f“ truth from unmasked instance . ST N ﬁgﬂﬂfg’gﬁi”fg —{ Instruction without key-part mask: + PCLL 505 54 38.2 3.6
j‘\_ntM wﬁ;t can | do for you? LF fﬁﬁm the lowest IG -FrﬂLlh‘S :a‘(’t',: e is to idenfify ... & DCL 50.2 4.9 38.8 52
Output: Agent | e 4 02 — . Conversely, the Agent _ our Log DYNAINST 509 46 387 4.4
A winhasc  winou mask M GUeer 03 & -,sng;ggg;gnwgnua:!migon | Input: What can I da for you? 1 - InsCL 52.5 40 384 5.5
| o | oo | s [ vt Oulpu Agent _ -
- e 23| = KPIG 522 3.5 425 1.7
; wemgmengens | : 2 25 M
B I cvavepnpmvayeyayesag N s s spmpsysepnysend R A ' INIT 432 53 %438 x5
S~
Computing Information Gain (IG) Replay Based on IG Fine-tuning at t MULTI ¥598  +22 414 4.2

Y. He, X. Huang, M. Tang, L. Meng, X. Li, W. Lin, W. Zhang, and Y. Gao. Don’t half-listen: Capturing key-part information in continual instruction tuning,
ACIl 2024
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® Conventional rehearsal-based methods rely on previous training data to retain the model’s ability,
which may not be feasible in real-world applications, for instance CL on publicly released LLM
checkpoint
® Self-Synthesized Rehearsal (SSR) that uses the LLM to generate synthetic instances for rehearsal.
O  the base LLM to generate synthetic instances, conducting in-context learning (ICL) with few-
shot demonstrations (The ICL ability of LLMs tends to exhibit a significant degradation after
supervised fine-tuning (SFT) on specific tasks)
O latest LLM is used to refine the outputs of synthetic instances (synthetic instance retains the
knowledge acquired by the latest LLM.)
O  select diverse high-quality synthetic instances for rehearsal (through clustering)
O  Llama-2-7b and SuperNI dataset (Wang et al., 2022)

AR Results Across Methods

@ In-Context Learning Based Instance Synthesis (@ Rehearsal with Selected Synthetic Instances M
Create similar pairs. ; i
Input: The square root of 16 : Input: i Refined synthetic
. put: Find the square of 7 Wl‘ ! 2]
Cutput: 4 Output: The square of 7 is 32 — o eI (&}
Input: Count from 1to 5 ) Y LLM g(s-2) select
Output: 1,2,3,4,5 Base LM 8() &7 '
Find the square of 7 Synthetic rehearsal
(0 v} The square of 715 49 data Tz d(0
- + +
@ Synthetic Output Refinement Englishto French: Hello ¢ rant data d(®
Bonjour .
Find the square of 7 1 b The square of 7 is 49 w Augmented data D)
5 y w \ A oo ofe) ofo) elo) o
L LM (-1 y \_ ume® ) W ‘ahe‘a‘s R oo 5009 N g
‘,;p“' “39 S

@,\ga“ @™ @'@aﬂ

J.Huang,L.Cui,A.Wang,C.Yang,X.Liao,L.Song,J.Yao,andJ.Su. Mitigatingcatastrophicforgettinginlargelanguagemodelswithself-synthesized rehearsal,
ACL 2024.
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® Introduce O-LoRA, a simple and efficient approach for continual learning in language models, incrementally learning
new tasks in orthogonal subspaces

® Orthogonal Gradient Descent (OGD) needs to store gradients of all previous data - intractable for large-scale
language models, used PEFT based on LORA

® Hypothesis : LORA parameters encapsulate crucial model update directions. Therefore, the gradient subspaces of
previous tasks are succinctly represented by the LoRA parameters.

® |lama &B trained on — Alpaca data set - open-source multitask instruction tuning dataset introduced by Taori et al.
(2023) Tasks from various domains, such as STEM, humanities, social sciences, and general knowledge.

® Tested on MMLU data set - Massive Multitask Language Understanding designed to evaluate the general knowledge
and problem-solving

min Ly (f (z; Wo + BtAgT)}J + AllUtT—lAtH%' + UL, By 3

Ay.B;
Answer: very positive Task loss Orthogonality constraint
Oupue 4 y / Orthogonal \
4 O-LoRA regularization
Transformer-Based Language Model /,’ MMLU
--------- L i | ' L i
Multi-Head Attention ; VZ;ltgl:S i I‘.\:”t_lé I‘.‘fl_zé “‘At'," LLaMA'TB 344
rained | # e X k.. X
K i Q v "t ; ,'";;-1‘\ ";-Z‘\A ;',Bt“l‘ T 7 Aoriginal Alpaca-LoRA 37.5
] ey - [ Orth | update direction
e o GRR Alpaca-LoRA-CL 23.3
Y T S U e | o
R W A i Wi .. Alpaca-inc-LoRA-CL  28.6
§ 4
o e, o
What is the sentiment of the following paragraph? E\' — & fe —..—p % = v&\‘{ﬁ& A AlpdCd OLORA CL 33 6
Option: very negative, negative, neutral, positive, | % -

very positive ) )
I love Bocchi the Rock!! I have watched all the SE““'“E."‘ T?P‘C } AQuesm?n
three seasons in one night!! No episodes missed!! Analysis  Classification nswering




|ii| Continual Model Refinement (CMR): Post Deployment
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What Is CMR

New Data User Feedback

1@“

Recurring &
Incremental
Deployed Process
LLM

It

Preference Distribution
Signals Shifts

CMR is the recurring and incremental
process of improving or correcting a
deployed LLM.

Improvement of LLMS

* Deployed language models decay over time
due to shifting inputs, changing user needs,
or emergent world-knowledge gaps. When
such problems are identified, we want to
make targeted edits while avoid modifying
behaviors of pre-trained models.

+ CMR allows safe, targeted, and continual
improvement of a deployed LLM.
Modern methods use model editing, retrieval-
triggered updates and parameter isolation
(e.g., LORA experts) to avoid broad
interference and maintain alignment.



B8 CMR: Lifelong Model Editing with Discrete Key-Value ~ #/AL
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This method treats hidden representations of the language model as a B

similarity key to decide when to use the updated parameters for a new task.

GRACE enables targeted, non-destructive model edits by adding a

lightweight key—value memory at selected layers, rather than modifying the | *1
model’s original weights. Xy —

How it works l/
. e et La:‘,TEI‘ |'_-

Each edit stores: (hi-1,v)

()=

Layer I+ 1

® a key (representing a latent activation pattern hi=1)

a v.alue (the corrected or updated behavior v, leamt by fine ; GRACEUI‘E_I) . mini(fi(fli_l-_ K:)) < e,
tuning) h =< i1 )
SR otherwise,

¢ an influence radius (g) controlling when the edit applies

Deferral decision at inference
®  Ateach GRACE-enabled layer, the model:
® Treats the current hidden activation as a query
Searches for the closest stored key
If the query is similar enough (distance < €): GRACE uses the value
Else falls back to the original pretrained computation

T. Hartvigsen, S. Sankaranarayanan, H. Palangi, Y. Kim, and M. Ghassemi. Aging with grace:
Lifelong model editing with discrete key-value adaptors. In Advances in Neural Information Processing Systems, 2023.



|ii| CMR : Lifelong Model Editing with Discrete Key-

====\/glue Adaptors

1)
This method treats hidden representations of the language model as a
similarity key to decide when to use the updated parameters for a new

task. -

GRACE enables targeted, non-destructive model edits by adding a

lightweight key—value memory at selected layers, rather than modifying
the model’'s original weights.

/La:-,?er {

Layer [+ |

e Experiments to correct hallucination: GPT-3 to generate 238

wikipedia-style biographies using subjects from WikiBio. Edits for all Method
238 biographies, creating 1392 sequential edits and 592 already- FT [25]
accurate outputs. FT+EWC [19]

e Test RetentionRate (TRR): Edited model retains its performance on

. . FT+Retrain [36]
original testing data

o Edit Retention Rate (ERR): We check how well an edited model MEND [30]
retains previous edits Defer [31]
e Metric used is perplexity - lower the better ROME [28]
Memory
GRACE

T. Hartvigsen, S. Sankaranarayanan, H. Palangi, Y. Kim, and M. Ghassemi. Aging with grace:

TRR
1449.3
1485.7

2394.3

1369.8
8183.7
30.28
25.47
15.84

ERR
28.14
29.24

35.34

1754.9
133.3
103.82
79.30
7.14

Lifelong model editing with discrete key-value adaptors. In Advances in Neural Information Processing Systems, 2023.

ARR
107.76
109.59

195.82

2902.5
10.04
14.02
10.07
10.00
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Existing methods for Continual refinement for LLMs fail to achieve reliability, Generalization and Locality. WISE resolves this by
introducing a dual-memory system that isolates edits from the original model’s knowledge.

Triangle in Lifelong Editing The WISE Solution: Dual Memory, Routlng, and Shardlng

Methods that edit model parameters (long- r h ) 1 r—‘ﬁ >

term memory e.g., ROME) suffer from poor .. N PR

locality, while retrieval based methods =

(working memory, e.g., GRACE) fail to il i ;S B

generalize. This creates a fundamental R C .. P |- oo, e s m

trade-off. N W TR sl

«  Reliability: Remembering all past edits = ’
across a long sequence. ayor” =

*  Generalization: Applying edits to (6 Wil st i Ko Mokt (%) Knowledge Sharding and Merging
paraphrased or semantically similar 1. Side Memory Creation: A copy of a specific FFN layer’s value matrix (w_v) is
queries. created to serve as a dedicated editable ‘side memory’ (W_V’)

«  Locality: Ensuring edits do not affect 2. Activation-Based Routing: A router determines if an input x is related to an edit by
unrelated knowledge in the model. calculating the activation of the side memory’s corresponding FFN layer)

3. Knowledge Sharding: Incoming edits are distributed across distinct subspaces of
the side memory defined by random masks. This prevents catastrophic forgetting.

4. Conflict-Free Merging: Periodically, the edited subspaces are merged into a single
side memory using Ties-merge.

Wang, Peng, et al. "Wise: Rethinking the knowledge memory for lifelong model editing of large language models." Advances in N eural Information Processing
Systems 37 (2024): 53764-53797.
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Across diverse tasks and thousands of sequential edits, WISE consistently outperforms state-of-the-art model editors by successfully
balancing the three key metrics of Reliability, Generalization and Locality.

WISE Overcomes the Impossible Triangle Superiority in Long-Sequence Editing
(ZsRE QA Task, LLaMA-2-7B) (ZsRE QA Task, LLaMA-2-7B, T=1000 edits)

Continual Editing T= 100 J— WISE (Our Method)
Reliability FT-EWC

=@ DEFER

=A= GRACE

ROME

Score

Generalization Reliability Generalization Locality
W WISE M GRACE MEMIT-MASS

Key Takeaways

Breaks the Trade-Off: WISE is the only method to maintain high performance across all three metric.

Outperforms SOTA by a Wide Margin: The average score of 0.83 on the QA Task represents a significant jump over the next best method.
In contrast GRACE'’s generalization score collapses to 0.08

Robust & Scalable: This strong performance holds across models (LLaMA, Mistral, GPT-J), tasks (Question Answering, Hallucination
Correction), and scales gracefully to 3,000+ edits, demonstrating true lifelong learning capability.
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Why CMA is Needed Different CMA Approaches
° A single alignment stage RL Based CMA SL-Based CMA
(e.g., RLHF, DPO) can
restrict the model's behavior +  Standard RLHF/DPO/STeER modifies + Frequent preference shifts require
to a narrower distribution. Imany p?]ra'."et?'i:tt once, causing continual correction of supervised
e Alignment updates often arge behavioral shifts. ?:hgntr_nentldgtatg.etsi Policy Fitti
overwrite previously learned . i i . * ~ontinual Uptimal Folicy Fitling
P  Thi y Adaptive Model Averaging (AMA): (COPF): An adaptation of DPO that
preferences; This An alignment-aware continual mitigates sub-optimal policy fittin
phenomenon is called the adaptation mechanism that averages 9 P p : y. g
“Alignment Tax” multiple model layers using adaptive and prever?ts over-optimization
e Asfactual knowledge, weights to minimize alignment tax. under continual updates.

societal norms, and safety . . .

+  Continual Proximal Policy
standards evolve, CMA Optimization (CPPO): Leams
ensures ongoing alignment example-level weighting to decide
with contemporary when to strengthen policy alignment
expectations. vs. retain earlier behaviors.
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Instruction
Tuning

The Alignment-Forgetting Trade-off
Reinforcement Learning from Human Feedback (RLHF) aligns
LLMs with human preferences, but degrades performance on the

Helpful + 56%
Common Sense -5%
Translation -45%

pre-trained abilities of a model (general language modelling — oupret _ Rewd -
reasoning , coding, instruction following , generalization), known as

¢ . 05 6% +05 0
the ‘alignment tax’ ko Pan o A e

076 +03 0"
Input Part ggll

The Surprising Power of Model Averaging (MA)

A simple interpolation between the pre-RLHF and post-RLHF
models (Model Averaging) achieved the strongest alignment- HMA adaptively interpolates between the pre and post RLHF
forgetting among all competing methods. models by assigning a unique averaging ration to each of the K
transformer blocks.

OM(K) = apd + (1 — ap)0 VE €1, ..., K.

Before RLHF After ALHF

Ouvg = @Osrr + (1 — @)OrLEF

Key Insight: Layer-Specific Effects

The trade-off is not uniform across the model.

Critically, averaging lower-level layers (e.g., layers 1 — 8) produces
a ‘magical’ improvement in both alignment reward and NLP task.

Optimization Goal

For a given level of forgetting’ (proxied by the mean of the ratios,
), HMA finds the optimal combination of layer wise ratios

That maximizes the alignment reward.

Tasks could share similar lower-level features, e.g., better word max  EoEommy e (2) [r*(z,a)]. subjectto %Zak =«
representation on low-level layers benefits both NLP and alignment (@1,....ak )EQ
tasks.

Lin, Yong, et al. "Mitigating the alignment tax of rIhf." Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. 2024.
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® HMA consistently outperformed vanilla MA strategies and it’'s performance was consistent across different model
sizes and RLHF algorithms such as RSF,PPO and DPO.

® Alignment is evaluated using the "helpfulness and harmlessness dataset" (Bai et al., 2022) and average reward
score across all prompts is reported as the HH RLHF.

® Alignment tax is evaluated on Commonsense QA, Reading comprehension, and Translation

Qutput “l am a student” —_ e —_
—~ - pary
; L T
: A < o1
; T i S 5
Qutput Part | : H | ‘@ 16 -
L i Level g 15 ﬁ 17.0
I o SRR fut =
1 : 5 3
Middle Part | : i Eu £ 165
: H Q Q
o
2w g
5 ~ MA (RSF) 5 160
: H Low @ 12 { —* Input Part MA (RSF) ©
: : i 2 —+— Middle Part MA (RSF) 2 *— MA(DPO)
Input Part : i Level —+— Output Part MA (RSF) 1os L7t MAOPO)
: H 11 :
‘:;‘ - a5 5.0 5.5 6.0 6.5 7.0 26 5.8 6.0 6.2 6.4
HH RLHF Reward HH RLHF Reward

Generalization to state of the art models on Alpaca benchmark

Model | Win-Rate | Reading CommonSense Trans
Zephyr-7B-f3 8.10% 37.47 66.34 36.55
HMA (Ours) 9.32% 38.93 66.55 37.23

Zephyr-7B-Gemma | 11.3% 41.15 66.3 38.09
HMA (Ours) 11.5% 42.45 66.4 38.71

Conclusion: By leveraging the insight of layer-specific features sharing, HMA provides a more effective, principled, and broadly
applicable method for mitigating the alignment tax in LLMs.
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==== Alignment (CPPQO)

The Core Idea

® The Insight: Categorize Samples by Reward & Probability
The foundation of CPPO is to classify each generated sample (x) into one of five
types based on it's reward score R(x) and the policy’s generation probability P(x).
This enables a targeted, rather than uniform, approach to policy updates.

® The Mechanism: Adaptive Sample-wise Weighting
The paper introduces two weights to modulate the PPO objective for each
sample:
O  a(z) Policy Learning Weight: Controls the intensity of learning from a
given sample
O  B(x) Knowledge Retention Weight: Controls the penalty for deviating
from the old policy for that sample.
® Weighting Strategy:
O High-performance (« T, 8 1):Consolidate knowledge for this sample.
O High variance/ overfitting sample (a1, 8 1) Learn new knowledge from
this sample and force new sample to be different.
O  Noisy (@4, B1): Decrease it's impact on leaming.
O Normal sample: Make no change to the PPO Objective.

Reward | gy | High
Variance | { Performance
A L m
Normal
Noisy Overfitting

Generation probability

The Final Objective Function:

This adaptive weighting strategy is integrated directly
into a modified PPO loss function, creating a more
stable and intelligent leaming objective.

3(0) = L;x-()LIP+ﬂ-KH+VF(0)
= Ei[a(a) L7417 (0) — B(=) L (0) — ¢ - L7 (0)]

Li*"(0) = (log Pr, (x;) — log Pr,_, (x:))*

Zhang, Han, et al. "Cppo: Continual learning for reinforcement learning with human feedback." The Twelfth International Conference on Learning

Representations. 2024 .
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® Evaluate method using the Reddit (Vdlske et al., 2017) ® Prevents Forgetting and Enables Backward Transfer
dataset for summarization. Used the human preference While all baselines exhibit catastrophic forgetting, CPPO is the
data provided by CarperAl5. 1.3B gpt2-xI as RM and PM only method to achieve a negative SFR. This indicates backward

® Outperforms Baselines in Final Alignment transfer.
After leaming multiple tasks, CPPO achieves the highest
reference Preference Model Score (rPMS), indicating superior
alignment with human preferences. Score Forgetting Ratio (SFR) (1)
Final rPMS (1) 0.1 0.080
35 {6l 0.040
3.0 0
25 -0.1
20 -0.161
[ F Wi PP -0.2
BED S temml R RN ety | D ) PPO lerasted RLHF~ PPO+EWC  CPPO (Learn)
prompt chosen rejected
string - lengths string - lengths string - lengths

SUBREDDIT: x/relationships TITLE:
My [21/M] girlfriend [19/F] broke..

SUBREDDIT: x/relationships TITLE:
My [21/M] girlfriend [19/F] broke..

SUBREDDIT: 1/AskReddit TITLE: Dear

Reddit: Have you ever HAD to be an.

TL;DR: My girlfriend and I broke up

after she went through my Facebook..

TL;DR: My Girlfriend of 15 months
went through my Facebook messages..

TL;DR: liked a girl but recognized
it wouldn't work out in the long..

TL;DR: Girlfriend went through my
Facebook account and found message..

TL;DR: My girlfriend found messages
in my Facebook from a girl T liked..

TL;DR: I had to be an asshole for a
moral/good cause.
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====. A Non-RL Method for Evolving LLM Alignment

DPO’s Limitations

® Static by Design: DPO is great for one-shot alignment, but it is not designed for adapting to human evolving human preferences
over sequential tasks.

® Risk of Over-optimization: DPO aggressively widens the gap between preferred and rejected samples
Alogmy = log my(y™ |x) — log me(y~ |z)

Loro(0) = —Epyr 4 []ogcr(ﬁ{.& logmg — Alog w,ef:l)].
The COPF Process

COPF introduces two continual learning specific approaches to cater to the task of continual alignment:

® Replay Memory: Maintaining a buffer of historical task data to merge with new task data.

® Function Regularization: When learning a new task, COPF employs a regularization loss to ensure the new policy does
not differ significantly from optimal policies of the previous tasks.

DPO suffers from instability during the initial training stage, to prevent this COPF decouples the reward estimation from the

estimation from the immediate policy state by explicitly determining rewards before fitting.

Lcopr = —E l]oga (ﬁ (.-A log mp — Alog mres — ~ - Cy ) )] .
T
continual correction

Zhang, Han, et al. "Copf: Continual learning human preference through optimal policy fitting.“ ACL 2025



@
1 CMA : COPF Results

T mm e s B
[P —

Task Incremental Learning for Human Feedback (TIL-HF) benchmark.

BRAIA

| HH-RLHF Reddit TL;DR

IMDB

Task | Q&A Summarization  Text Continuation
Input | Question Reddit POST Partial Review
Helpful & , , Positive
Summarized .
Output Harmless o R Sentiment
Answer Reddit POST Completion
Preference
. . . e . . SteamSHP GPTj DistilBERT
COPF achieves the highest overall accuracy while better mitigating catastrophic Metric e ! .
forgetting compared to strong baselines, including a continual version of DPO. Train Set | 352k 14.8k 24.9k
Valid Set | 200 200 200
Test Set | 1000 1000 1000
HH-RLHF Reddit TL:DR IMDB Overall performance  Memory stability
Method / Taxonomy SteamSHP (1) Gpt-J (1)  DistilBert (1) AA(f) AIA(D) BWT(1) FM()
L2-Reg / function regularization 0.797 0.812 0.812 0.807 0.807 -0.028 0.031
AGM [29] / gradient projection 0.812 0.827 0.832 0.824 0.829 -0.022 0.024
EWC [20] / weight regularization 0.803 0.821 0.826 0.817 0.821 -0.026 0.026
MAS [21] / weight regularization 0.807 0.819 0.812 0.813 0.819 -0.027 0.027
Lw¥F ]22] / function regularization 0.813 0.841 0.833 0.829 0.820 -0.024 0.024
TFCL |23] / weight regularization 0.813 0.832 0.829 0.825 0.821 -0.021 0.021
DER++ [24] / experience replay 0.815 0.837 0.841 0.831 0.836 -0.017 0.019
DPOY [4] / function regularization 0.825 0.875 0.844 0.848 0.862 -0.026 0.026
COPF' / function regularization 0.837 0.877 0.878 0.864 0.851 0.007 -0.007
COPF® / function regularization 0.856 0.895 0.815 0.855 0.878 -0.021 0.021
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Existing continual learning benchmarks are typically too simple for
modern aligned LLMs and do not measure general abilities,
instruction-following quality, or safety behavior after incremental

updates.

TRACE defines a rigorous, standardized continual learning

benchmark

TRACE consists of eight sequential tasks spanning multiple
domains and difficulty types. The tasks are chosen to challenge
models across reasoning, domain knowledge, multilingual skills,
code generation, and math reasoning.

ScienceQA Science question answering

FOMC Classify the tone of a central-bank statement: dovish (pro-
lower rates), hawkish (pro-higher rates), or neutral
MeetingBank — Meeting transcript summarization

C-STANCE — Chinese stance detection

20Minuten — German text simplification

Py150 Python next-line completion

Mathematical reasoning

¢ NumGLUE-calculus and mathematics

¢ NumGLUE-data structures

Math reasoning (cm)
Math reasoning (ds)

Benchmarks Datasets : TRACE : A Comprehensive Benchmark for
Continual Learning in Large Language Models

Metric (name) Brief explanation Equation
Overall Performance
i
(OP) Overall performance at step t on all OP; = I ZH,[?,
tasks learned so far (average over i=1
tasks 1..t).
Backward Transfer
=
(BWT) Backward transfer at step ¢t (how BWT, = 3 (lff_),—h’,’_j,)
learning new tasks affects old-task i=1
performance; negative means forget-
ting).
Hiianiainatate J In-context learning
demonstrations |;| N
Input SP Generate )
Il
Catte In a week, there are 7 days

Reasoning-based
Continual Learning
Question:

Reasoning:

Solve the following math problem.
Give your reasoning first, and then the answer.

A football team practices for 6 hours daily. This week Input
they could not practice due to rain on 1 days. Find the
total number of hours they practiced this week

Few training data

G

If the football team could not
practice for 1 day due to rain,
they practiced for 7-1 = 6

day ey practice for

Label

6 hours each day, the total
number of hours they practic
ed this week is 6 days * 6
hours/day = 36 hours
Answer: 36

Supervised training

Table 1: OP(BWT) for all the baseline models and 3 baseline methods.

ICL SeqFT LoraSeqFT Replay
LLaMA-2-7B-Chat | 38.9 | 48.7(—8.3%) | 12.7(—45.7%) | 55.5(2.6%)
LLaMA-2-13B-Chat | 41.9 | 49.9(~7.0%) | 28.0(—36.5%) | 56.6(0.4%)
Vicuna-7B-V1.5 42.2 | 49.2(—8.4%) | 33.4(—23.7%) | 55.3(0.2%)
Vicuna-13B-V1.5 | 46.9 | 51.7(—5.9%) | 31.6(—28.4%) | 56.9(0.6%)
Baichuan2-7B-Instruct | 44.6 | 43.4(—15.4%) | 43.8(—9.0%) | 51.7(1.1%)
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e TemporalWiki is a lifelong benchmark built from monthly Wikipedia/Wikidata snapshots to train and evaluate

“ever-evolving” language models.

e |t targets temporal misalignment (models trained on older data producing outdated facts).

e TWiki-Diffsets: training data created by taking the diff between consecutive monthly Wikipedia snapshots (new
articles + changed/new sentences).

e Probes are labeled UNCHANGED vs CHANGED to evaluate stability (retain) and plasticity (update).

e Diff-based updating is reported as ~12x less compute than retraining on full snapshots (in their setup).

# of Articles # of Tokens
WIKIPEDIA-08 6.3M 4.6B
TWIKI-DIFFSET-0809 306.4K 347.29M
WIKIPEDIA-09 6.3M 4.6B
TWIKI-DIFFSET-0910 200.2K 347.96M
WIKIPEDIA-10 6.3M 4.7B
TWIKI-DIFFSET-1011 301.1K 346.45M
WIKIPEDIA-11 6.3M 4.6B
TWIKI-DIFFSET-1112 328.9K 376.09M
WIKIPEDIA-12 6.3M 4.7B

Jang et al. (EMNLP 2022): “TemporalWiki: A Lifelong Benchmark

450 - ‘ = =Initial ® Full = Diff ® RecAdam ™ Mix-review ® LoRA = K-Adapter

0809 0910 1011 1112

Figure 3: Average overall perplexity of TWIKI-PROBES. We
average the perplexities of UNCHANGED and CHANGED with
equal importance placed on stability and plasticity. The x-axis
depicts the two-month intervals. A lower score indicates better
performance.
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® Dataset Size: Contains 1,616 NLP tasks across 76 task types, statistic
spanning 55 languages and 33 domains. # of tasks 1616
® Task Types: Includes a wide range of NLP tasks such as # of task types 76
classification, text generation, question answering, coreference iotf: ila“g“?‘ges gg
oI aomains
resolution, paraphrasing, and more. # of non-English tasks 576
® Task Instructions: Each task is paired with detailed instructions, avg. definition length (words per task) 56.6
including a task definition, positive examples, and negative avg. # of positive examples (per task) 2.8
avg. # of negative examples (per task) 24
examples. avg. # of instances (per task) 3106.0
® Languages & Domains: Covers tasks in English and non-English
languages (576 non-English tasks) across diverse domains like
medicine, business, sports, law, technology, and more.
§ j;mn Bty BN N o w1 s o ‘
S
. L L T LT LT T Ty mmm
IS NERENEEEERRENE LR LT EEEREEES RN E N LE
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==== |nstruction Tuning for MLLMs)

Continual  Classification Task Grounding Task VQA Task
Training

® Goal: Benchmark continual instruction tuning and measure forgetting vs.

Classification

or

I’etalned ablllty { v"‘"ﬂ:“‘“‘i“h°°bj“‘ it } | box coordinate of the region this | ‘.llllc‘i’,ﬁcnh:?&lﬁ::ng .

Coverage: 10 datasets spanning 8 multimodal task categories m e (=

Training setup: Sequential instruction tuning using LoRA (Low-Rank = [@] ‘ \5*35";-_--:-;-:_-; .

Ad aptatl On) O T ?<l>? I:s;;:rp;:;;ug::m
o

¢  Evaluation (two views): " P o e
- truth
Instruction-Follow Accuracy: Standard task score (e.g., accuracy / exact M (opama Y (s (eeee ) fRSSSSamSSg

E Castle H ' [000.13099.099] | ! Building e
matCh) :;‘l;‘c;:::mx.smua‘:cﬂ | Truth Alignment: | ! Truth Alignment: | \ Truth Aligament: ulrt
H = . Answer the question | True ! | False ! | False
Reasoning / Knowledge Retention: LLM-graded score (focuses on reasoning wingasiglewond | Revoning Cpbity: || Ressonig Cpaiy: || Rewoing Cepbilty: | 70 o0
or phrase. \ ; ' , ' /| quasm
quality)

Table 1: The statistic of collected datasets and instructions in CoIN benchmark.

Accuracy per Task (LLaVA Variants on ColN Benchmark)

. Train Test 100
Task Dataset Instruction Number Number . LLaVA Multitask
eV RefCOCO Please provide the bounding [ LLava Zero-shot
ScienceQA Grounding RefCOCO+ box coordinate of the region 55k 31k 80 4 BN LlaVA Sequential
_____________________ RefCOCQg _ this sentence describes: <description> | [ LLaVA Finetune
‘What is the object in the image?
Classification ImageNet Answer the question using a 129k 5k 3
single word or phrase
v oo e PP Answer the question usinga ~ o~ 9
E Image Question Answering (IQA) VQAv2 single word or phrase 82k 107k %
g T T T T e P Answer with the option’s letter ~ "~~~ "~ =}
/ Knowledge Grounded IQA ScienceQA from the given choices directly 12k 4k <
_____ T . Answerthequestionusinga .. o
| Reading Comprehension [QA - TextVOA single wordorphrase Mo
S Visual Reasoning IQA GQA Answer the question using a 72k 1k
VizWiz T _____->________snglewordorphrase 7T
. I Answer the question using a
Blind People IQA VizWiz single word or phrase 20k 8k
7777777777777777777777777777777 Answer the question usinga ¥ & O Ky &
OCRIQA OCR-VQA single word or phrase 165k 100k o s & & R oeb\ o N

B o2
4° g & e &
Task
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Why Forgetting Happens in MLLMs

e Catastrophic forgetting in multimodal models often stems
from imbalanced or misaligned embedding
representations, not just sequential training.

e Multimodal LLMs combine representations from
fundamentally different spaces: Text embeddings, Vision
embeddings. These are heterogeneous and were not jointly
pre-trained to lie on the same manifold.

e Each multimodal task requires different alignments between

image/text tasks

e MLLMs depend heavily on modality bridges (adapters,
projection layers). These bridges are: Not stable across
tasks, gets updated aggressively, sensitive to downstream
distribution shifts

e Different modalities are emerging throughout the
incremental learning

Core Design Principles for Better CMLLMs

» Fixing or regularizing the structure of the embedding
space/

+ Allocate task-aligned embedding directions more
evenly across the vector space.

+ Use representation regularization to prevent
dominant-dimension collapse.

+ Encourage modality separation or orthogonality to
reduce interference.

Modality
Encoder

"""" Conector LLM
v Backbone

s

|

2 [
(o]
X
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® RAG augments an LLM with an external, updatable memory (documents, passages,
databases) retrieved at inference time
® RAG can be seen as an external-memory-based alternative to continual learning : it updates
external knowledge, not parameters, while CL updates model parameters
O  Avoids Catastrophic Forgetting Entirely : No parameter overwriting, New knowledge
added by indexing new documents, Zero Replay Cost - No need to store old training
data, Handles Temporal & Factual Drift
® Parameter-based continual learning performs updates via gradient descent, whereas
retrieval-augmented generation updates knowledge by modifying the underlying corpus
RAG often outperforms CPT for factual freshness
® RAG does NOT solve:
O  Continual instruction tuning, Skill acquisition (reasoning, coding), Behavioral
alignment, Multimodal grounding

Lewis et al., 2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, NeurlPS 2020
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® Continual learning community tends to prioritize empirical research over theoretical
exploration.
O  Learning Dynamics in Continual Pre-Training for Large Language Models [1]
O  Unified Domain Incremental Learning (UDIL) in [2] proposes upper bounds for intra-
domain and cross-domain distillation losses.
O Applying these existing theories directly to continual LLMs can be imprudent, given
their pre-trained, large-scale nature and loss functions.
® More sophisticated and accurate data mixing strategies and efficient replay sample selection
mechanisms are needed
® The long-term memory inherent in the whole set of parameters of LLMs often lacks
interpretability and explicit manipulability
® The existing works on mostly focused on domain incremental and task incremental learning
settings, needs exploration in class incremental learning for LLMs.

[1]Wang, X., Tissue, H., Wang, L., Li, L., & Zeng, D. D. (2025). Learning dynamics in continual pre-training for large language
models. arXiv preprint arXiv:2505.07796.[

[2] Shi, H., & Wang, H. (2023). A unified approach to domain incremental learning with memory: Theory and algorithm. In H.
Larochelle et al. (Eds.), Advances in Neural Information Processing Systems, 36. NeurlPS.
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¢ Avalanche (PyTorch): End-to-end continual learning library with benchmarks, many implemented baselines/SOTA
algorithms, experiment utilities, and reproducible pipelines. Great starting point for deep-learning CL research.

¢ Continuum: Dataset and scenario utilities for setting up class-incremental and task-incremental experiments easily
(good for data handling & scenario generation).

¢ PyCIL (Python CIL): Focused toolbox for class-incremental learning: implements classical CIL methods (iCaRL,
LwF, EWC variants) and evaluation pipelines.

¢ Renate: Production-oriented library for automating continual retraining and model maintenance (built on PyTorch &
PyTorch Lightning) — useful for applied systems and MLOps workflows.

¢ Sequel: Research-friendly framework (PyTorch + JAX support) designed for extensibility across regularization,
replay, and architectural CL methods.

® River (stream learning): Lightweight streaming/online learning library focused on concept drift and incremental
models (ideal for non-deep or resource-constrained streaming setups).

¢ ContinualLM: Github repository of an extensive Continual Learning framework for LLMs focused on continual DAPT
containing pytorch implementation of multiple SOTA methods.

River

3

/§

PyCIL St
Y &

A Python Toolbox for 5 } 7 3
Class-Incremental Learning G
Via Model Reuse m‘



https://avalanche.continualai.org/
https://avalanche.continualai.org/
https://github.com/Continvvm/continuum
https://github.com/Continvvm/continuum
https://github.com/LAMDA-CL/PyCIL
https://github.com/LAMDA-CL/PyCIL
https://github.com/awslabs/Renate
https://github.com/awslabs/Renate
https://github.com/nik-dim/sequel
https://github.com/nik-dim/sequel
https://riverml.xyz/0.9.0/
https://riverml.xyz/0.9.0/
https://github.com/UIC-Liu-Lab/ContinualLM
https://github.com/UIC-Liu-Lab/ContinualLM
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